Interrelationship-Based Selection for Decomposition Multiobjective Optimization

Ke Li, Sam Kwong, Fellow, IEEE, Qingfu Zhang, Senior Member, IEEE, and Kalyanmoy Deb, Fellow, IEEE

Abstract—Multiobjective evolutionary algorithm based on decomposition (MOEA/D), which bridges the traditional optimization techniques and population-based methods, has become an increasingly popular framework for evolutionary multiobjective optimization. It decomposes a multiobjective optimization problem (MOP) into a number of optimization subproblems. Each subproblem is handled by an agent in a collaborative manner. The selection of MOEA/D is a process of choosing solutions by agents. In particular, each agent has two requirements on its selected solution: one is the convergence toward the efficient front, the other is the distinction with the other agents’ choices. This paper suggests addressing these two requirements by defining mutual-preferences between subproblems and solutions. Afterwards, a simple yet effective method is proposed to build an interrelationship between subproblems and solutions, based on their mutual-preferences. At each generation, this interrelationship is used as a guideline to select the elite solutions to survive as the next parents. By considering the mutual-preferences between subproblems and solutions (i.e., the two requirements of each agent), the selection operator is able to balance the convergence and diversity of the search process. Comprehensive experiments are conducted on several MOP test instances with complicated Pareto sets. Empirical results demonstrate the effectiveness and competitiveness of our proposed algorithm.

Index Terms—Convergence, decomposition, diversity, evolutionary computation, multiobjective optimization.

I. INTRODUCTION

MULTIOBJECTIVE optimization problems (MOPs), which naturally arise in many disciplines, such as optimal design [1], economics [2], and electric power systems [3], involve more than one objective function to tackle simultaneously. Since an evolutionary algorithm (EA) is able to approximate multiple nondominated solutions, which portray the trade-offs among conflicting objectives, in a single run, it has been recognized as a major approach for multiobjective optimization [4]. Over the last two decades, much effort has been devoted in developing multiobjective EAs (MOEAs) (see [5]–[9]).

There are two basic requirements in evolutionary multiobjective optimization.

1) Convergence: The distance of solutions toward the efficient front (EF) should be as small as possible.
2) Diversity: The spread of solutions along the EF should be as uniform as possible.

Most MOEAs use selection operators to address these two requirements. Depending on different selection mechanisms, the existing MOEAs can be classified into three categories.

1) Pareto-Based Method: It uses Pareto dominance relation as the primary selection criterion to promote the convergence and the diversity is maintained by density metrics, such as crowding distance in NSGA-II [6] and clustering analysis in SPEA2 [10].
2) Indicator-Based Method: It uses a performance indicator to guide the selection process (see [11]–[13]). The most commonly used performance indicator is hypervolume (HV) [14], which can measure convergence and diversity simultaneously.
3) Decomposition-Based Method: It decomposes a MOP into a number of single objective optimization subproblems by linear or nonlinear aggregation methods (see [5], [15]), or several simple multiobjective subproblems [16], and optimizes them in a collaborative manner. It is worth noting that a neighborhood concept among solutions was first proposed in [15] and then used in [5] as a key algorithmic component.

The selection of Pareto-based methods is a convergence first and diversity second strategy. As discussed in [16], such mechanism has difficulties in tackling some problems with particular requirements on diversity. HV indicator is a theoretically sound metric that measures both convergence and diversity of a solution set [17]. However, as a selection criterion, the balance between convergence and diversity of each step is not adjustable. Since the update of population only depends on the aggregation function of a subproblem, the decomposition-based method also can be regarded as a convergence first and diversity second strategy. However, due to the specification of different search directions a priori, the
decomposition-based method provides a more flexible manner for balancing convergence and diversity.

MOEA/D [5], a decomposition-based method, has become an increasingly popular choice for \textit{a posteriori} multiobjective optimization [18]. It has a number of advantages [19], such as its scalability to problems with more than three objectives [20], applicability for combinatorial optimization problems [21], high compatibility with local search [22], and capability for tackling problems with conflicted Pareto sets (PSs) [23]. However, as discussed in some recent studies (see [18], [24], [25]), evenly distributed weight vectors, used in the original MOEA/D, might not always lead to evenly distributed Pareto-optimal solutions (e.g., when the EF is disconnected, some weight vectors might not have solutions).

In MOEA/D, \(N\) subproblems are respectively handled by \(N\) collaborative agents. Each agent has two requirements on its selected solutions: one is the convergence toward the EF, the other is the distinction with respect to the other solutions in population. The selection of MOEA/D is a process of choosing solutions by agents. In each step, the achievement of these two requirements for each agent is therefore a balance between convergence and diversity of the search process. However, most, if not all MOEA/D implementations only explicitly consider the convergence requirement in selection, while the diversity issue is implicitly controlled by the wide distribution of weight vectors. Differently, [26] provides a first attempt to explicitly address those two requirements by considering the mutual-preferences between subproblems and solutions. Based on the preference articulations, a stable matching model [27] is suggested to guide the selection process. The encouraging results observed in [26] inspires our further explorations along this direction. This paper develops a simple yet effective method to establish an interrelationship between subproblems and solutions. By simultaneously exploiting the mutual-preferences between subproblems and solutions, this interrelationship can be used as a guideline to select the elite solutions to survive as the parents for the next generation. As a result, our proposed selection operator is able to allocate an appropriate solution to each agent (thus each subproblem), and balance the convergence and diversity of the search process.

In the remainder of this paper, we first provide some background knowledge in Section II. Then, we provide a revisit of the selection process in MOEA/D in Section III. Afterwards, the technical details of our proposed selection operator, based on the interrelationship between subproblems and solutions, are described in Section IV. Next, its incorporation into MOEA/D is described in Section V. The general experimental settings are described in Section VI, and the empirical results are presented and analyzed in Section VII. Finally, Section VIII concludes this paper and provides some future directions.

II. PRELIMINARIES AND BACKGROUND

In this section, we first provide some basic definitions of multiobjective optimization. Afterwards, we introduce a classical decomposition method used in this paper.

A. Basic Definitions

A MOP can be stated as follows:

\[
\begin{align*}
\text{minimize} & \quad F(x) = (f_1(x), \ldots, f_m(x))^T \\
\text{subject to} & \quad x \in \Omega
\end{align*}
\]

where \(\Omega = \prod_{i=1}^{m} [a_i, b_i] \subseteq \mathbb{R}^m\) is the decision (variable) space, and a solution \(x = (x_1, \ldots, x_m)^T \in \Omega\) is a vector of decision variables. \(F : \Omega \rightarrow \mathbb{R}^m\) constitutes \(m\) real-valued objective functions and \(\mathbb{R}^m\) is called the objective space. The attainable objective set is defined as the set \(\Theta = \{F(x) | x \in \Omega\}\). Due to the conflicting nature of MOP, only partial ordering can be specified among solutions. In other words, for two solutions \(x^1, x^2 \in \Omega\), it can so happen that \(F(x^1) \) and \(F(x^2) \) are incomparable. Some definitions related to MOP are given as follows in the context of minimization problems.

\textbf{Definition 1}: A solution \(x^1 \) is said to Pareto dominate a solution \(x^2\), denoted as \(x^1 \preceq x^2\), if and only if \(f_i(x^1) \leq f_i(x^2)\) for every \(i \in \{1, \ldots, m\}\) and \(f_i(x^1) < f_i(x^2)\) for at least one index \(j \in \{1, \ldots, m\}\).

\textbf{Definition 2}: A solution \(x^* \in \Omega\) is said to be Pareto-optimal if there is no other solution \(x \in \Omega\) such that \(x \preceq x^*\).

\textbf{Definition 3}: The set of all Pareto-optimal solutions is called the PS. Accordingly, the set of all Pareto-optimal objective vectors \(EF = \{F(x) | x \in PS\}\) is called the EF.

\textbf{Definition 4}: The ideal objective vector \(z^* = (z^*_1, \ldots, z^*_m)^T\), where \(z^*_i = \min f_i(x), i \in \{1, \ldots, m\}\).

\textbf{Definition 5}: The nadir objective vector \(z^{nad} = (z^{nad}_1, \ldots, z^{nad}_m)^T\), where \(z^{nad}_i = \max f_i(x), i \in \{1, \ldots, m\}\).

B. Decomposition Method

In the classical multiobjective optimization [28], there are several approaches for constructing aggregation functions to decompose the MOP, in question, into a single-objective optimization subproblem. Among them, the most popular ones are weighted sum, Tchebycheff (TCH) and boundary intersection approaches [29]. In this paper, without loss of generality, we only consider the TCH approach, which is mathematically defined as follows:\footnote{The definition of TCH approach in this paper is different from that in [5]. This setting can produce more uniformly distributed solutions in the objective space [18]. Due to the page limit, more discussions on (2) are presented in the supplemental file of this paper.}

\[
\begin{align*}
\text{minimize} & \quad g^\text{TCH}(x|w, z^{**}) = \max \{\min_{1 \leq i \leq m} f_i(x) - z^{**}_i/w_i\} \\
\text{subject to} & \quad x \in \Omega
\end{align*}
\]

where \(w = (w_1, \ldots, w_m)^T\) is a user specified weight vector, \(w_i \geq 0\) for all \(i \in \{1, \ldots, m\}\) and \(\sum_{i=1}^{m} w_i = 1\). In practice, \(w_i\) is set to be a very small number, say \(10^{-6}\), in case \(w_i = 0\). \(z^{**} = (z^{**}_1, \ldots, z^{**}_m)^T\), where \(z^{**}_i = z^*_i - \epsilon\) for all \(i \in \{1, \ldots, m\}\), \(\epsilon > 0\) is a very small number, say \(10^{-6}\). Under some mild conditions, the optimal solution of (2) is a Pareto-optimal solution of the MOP in question. By altering weight vectors, TCH approach is able to find different Pareto-optimal solutions. The search direction of TCH approach is \(w\).
III. REVISITS OF THE SELECTION PROCESS IN MOEA/D

In MOEA/D, \(N \) subproblems are respectively handled by \(N \) collaborative agents. Selection, in the context of MOEA/D, can thus be regarded as a process of choosing solutions by agents. In particular, each agent has the following two requirements on its selected solution.

1) **Convergence:** The selected solution should have a as good as possible aggregation function value for the underlying subproblem.

2) **Diversity:** The selected solution should be different from the other agents’ choices as much as possible.

Fig. 1 gives an intuitive explanation on these two requirements. As discussed in Section II-B, the optimal solution of a subproblem is a Pareto-optimal solution of the MOP in question. Therefore, the convergence requirement is easy to understand as the responsibility of an agent is to optimize its handled subproblem. As the optimal solution of a subproblem is usually on the direction line of the corresponding weight vector and weight vectors are designed to be evenly distributed [5], a unique and distinctive solution for each agent (thus for each subproblem) implies a promising population diversity and a well distribution along the PF. The more these two requirements are satisfied, the better is the quality of a solution. Depending on different specifications of these two requirements, the selection mechanisms of existing MOEA/D implementations can be understood from the following three ways.

1) **Most MOEA/D implementations update the population based on the aggregation function value of a solution. In this case, only the convergence requirement has been explicitly considered by an agent in selection, while the diversity issue is implicitly controlled by the wide distribution of weight vectors. As more than one solution might have similar aggregation function values for the same subproblem, this update mechanism might result in the loss of population diversity.**

2) In [5], the penalty-based boundary intersection (PBI) approach presents an avenue to aggregate these two requirements into a single criterion. In particular, the PBI approach is formulated as

\[
\begin{align*}
\text{minimize} & \quad g_{\text{PBI}}(x|w, z^*) = d_1 + \theta d_2 \\
\text{subject to} & \quad x \in \Omega
\end{align*}
\]

where \(d_1 \) is the distance between \(z^* \) and the projection of \(x \) on the direction line of \(w \), and \(d_2 \) is the perpendicular distance between \(x \) and the direction line of \(w \). Intuitively, \(d_1 \) can be regarded as a measure of the convergence requirement and \(d_2 \) is a diversity measure. Although the PBI approach has explicitly integrated these two requirements, it still has the problem mentioned in the first issue.

3) **By defining the mutual-preferences between subproblems and solutions, [26] suggests a method to tackle these two requirements separately. In particular, the preference of a subproblem over a solution measures the convergence issue; while, similar to the effect of \(d_2 \) in PBI approach, the preference of a solution over a subproblem measures the diversity issue. The selection process is thereafter coordinated by a stable matching model which finds a suitable matching between subproblems and solutions. Since the stable matching achieves an equilibrium between the mutual-preferences of subproblems and solutions, this selection mechanism strikes a balance between convergence and diversity of the search process.**

From the encouraging results reported in [26], we find the effectiveness and advantages of treating agents’ two requirements explicitly and separately. This paper presents a further attempt along this direction. In particular, according to the two requirements of each agent, an interrelationship between subproblems and solutions is built upon the specifications of their mutual-preferences. Afterwards, based on this interrelationship, a simple yet effective method is proposed to guide the selection process.

IV. SELECTION OPERATOR BASED ON INTERRELATIONSHIP

Given a set of subproblems \(P = \{p^1, \ldots, p^N\} \) and a set of solutions \(S = \{x^1, \ldots, x^M\} (M > N) \), the selection process is to choose the appropriate solution for each subproblem.

A. Mutual-Preference Setting

As discussed in Section III, an agent has two requirements (i.e., convergence and diversity) on its selected solution. From the perspectives of subproblems and solutions, these two requirements can be defined as their mutual-preferences. Different mutual-preference settings can lead to different behaviors of the selection process. Without loss of generality, we provide a simple way in setting mutual-preferences as follows.

1) A subproblem \(p \) prefers solution \(x \) that has a better aggregation function value. Therefore, the preference value of \(x \) with regard to \(p \), denoted as \(\Delta_p(p, x) \), is evaluated by the aggregation function of \(p \)

\[
\Delta_p(p, x) = g(x|w^p, z^*_{\text{xx}})
\]

where \(w^p \) is the weight vector of \(p \) and \(g(\cdot|\cdot) \) is the aggregation function of \(p \). Obviously, \(\Delta_p(p, x) \) measures the achievement of convergence requirement of the agent, which handles \(p \), on \(x \).
2) A solution x favors subproblem p on which x can have a as good as possible aggregation function value. Moreover, in MOEA/D, each weight vector also specifies a subregion in the objective space. Consider the population diversity, the subregion corresponding to p, in the objective space, should be as sparse as possible. In view of these two considerations, the preference value of p with regard to x, denoted as $\Delta_X(x, p)$, is calculated based on the following form:

$$\Delta_X(x, p) = d^\perp(x, p) + nc(p)$$ (5)

where $d^\perp(x, p)$ is the perpendicular distance between x and the weight vector of p, it is calculated as follows:

$$d^\perp(x, p) = \bar{F}(x) - \frac{w^T \bar{F}(x)}{w^Tw}w$$ (6)

where $\bar{F}(x)$ is the normalized objective vector of x, and its kth individual function is normalized as

$$\bar{f}_k(x) = \frac{f_k(x) - z^*_k}{z^{\text{nad}}_k - z^*_k}$$ (7)

$\Delta_X(x, p)$ measures the achievement of diversity requirement of the agent, which handles p, on x. The first item of (5) plays the same effect as d_2 in PBI approach, while, inspired by [20], the second item $nc(p)$, the niche count of p, plays as a density estimator. In order to evaluate the niche count of the subregion corresponding to a subproblem, we first initialize it to be zero. Afterwards, based on the perpendicular distances between subproblems and solutions, the subproblem whose weight vector is closest to x is considered to be associated with x. And the niche count of the subregion corresponding to the subproblem is incremented by one. A simple example to illustrate the evaluation of niche count is presented in Fig. 2, where the dotted line connects a subproblem with its associated solutions and the dotted circle represents the niche around a subproblem. The niche count of a subproblem is the number of solutions associated with it, e.g., $nc(p^3) = 3$.

![Illustration of the niche count](image-url)

Algorithm 1: COMPTPREF($S, P, z^*, z^{\text{nad}}$)

<table>
<thead>
<tr>
<th>Line</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>for $i \leftarrow 1$ to M do</td>
</tr>
<tr>
<td>2</td>
<td>$\bar{F}(x^i) \leftarrow F(x^i) - z^*$;</td>
</tr>
<tr>
<td>3</td>
<td>end</td>
</tr>
<tr>
<td>4</td>
<td>for $i \leftarrow 1$ to M do</td>
</tr>
<tr>
<td>5</td>
<td>for $j \leftarrow 1$ to N do</td>
</tr>
<tr>
<td>6</td>
<td>$\Delta_p(p^i, x^j) \leftarrow g(x^j, p^i);</td>
</tr>
<tr>
<td>7</td>
<td>$d^\perp(x^i, p^j) \leftarrow \bar{F}(x^i) - \frac{w^T \bar{F}(x^i)}{w^Tw}w^j;</td>
</tr>
<tr>
<td>8</td>
<td>end</td>
</tr>
<tr>
<td>9</td>
<td>end</td>
</tr>
<tr>
<td>10</td>
<td>Sort each row of d^\perp in ascending order and keep the sorted indices in Ψ_{d^\perp};</td>
</tr>
<tr>
<td>11</td>
<td>for $i \leftarrow 1$ to N do</td>
</tr>
<tr>
<td>12</td>
<td>$nc[i] \leftarrow 0;</td>
</tr>
<tr>
<td>13</td>
<td>end</td>
</tr>
<tr>
<td>14</td>
<td>Normalize d^\perp and nc to range [0, 1] respectively;</td>
</tr>
<tr>
<td>15</td>
<td>for $i \leftarrow 1$ to M do</td>
</tr>
<tr>
<td>16</td>
<td>$nc[\Psi_{d^\perp}(i, 1)] \leftarrow nc[\Psi_{d^\perp}(i, 1)] + 1;</td>
</tr>
<tr>
<td>17</td>
<td>end</td>
</tr>
<tr>
<td>18</td>
<td>for $i \leftarrow 1$ to M do</td>
</tr>
<tr>
<td>19</td>
<td>for $j \leftarrow 1$ to N do</td>
</tr>
<tr>
<td>20</td>
<td>$\Delta_X(x^i, p^j) \leftarrow d^\perp(x^i, p^j) + nc(j);</td>
</tr>
<tr>
<td>21</td>
<td>end</td>
</tr>
<tr>
<td>22</td>
<td>end</td>
</tr>
<tr>
<td>23</td>
<td>return $\Delta_X, \Delta_P, \Psi_{d^\perp}$</td>
</tr>
</tbody>
</table>

The pseudo-code of evaluating the mutual-preferences between subproblems and solutions is given in Algorithm 1.

B. Interrelationship Between Subproblems and Solutions

Based on the above mutual-preference settings, we build an interrelationship between subproblems and solutions in the following manner.

1) **Selection of the Related Subproblems for Each Solution:**

Sort each row of Δ_X in ascending order and keep the sorted indices in Ψ_X. For each solution $x' \in S$, $i \in \{1, \ldots, M\}$, the first K_d subproblems in the ith row of Ψ_X are selected as the related subproblems of x', where K_d is a user-specified parameter.

2) **Selection of the Related Solutions for Each Subproblem:**

For each subproblem $p^j, j \in \{1, \ldots, N\}$, let Λ^j denote the set that contains all solutions whose related subproblems include p^j. Then, the set of related solutions of p^j, denoted as χ^j, is formulated as follows.

a) If $|\Lambda^j| = 0$, χ^j is set to be an empty set, i.e., $\chi^j = \emptyset$.

b) If $0 < |\Lambda^j| \leq \vartheta$, where $\vartheta > 0$ is a control parameter, χ^j is set to be Λ^j, i.e., $\chi^j = \Lambda^j$.

c) Otherwise, χ^j is set to include the ϑ closest solutions to p^j in Λ^j.

2An example of empty χ is presented in the supplemental file of this paper.
Algorithm 2: INTERRELATION(ΔX,Ψd⊥)

Input: preference matrix ΔX, distance ordering matrix Ψd⊥
Output: list of related solutions of subproblems χ

1) Sort each row of ΔX in ascending order and keep the sorted indices in \(\Psi_1 \);

for \(i \leftarrow 1 \) to \(N \) do
 for \(j \leftarrow 1 \) to \(M \) do
 \(\chi \) = \{ \}
 for \(k \leftarrow 1 \) to \(K_d \) do
 if \(\Psi_X(j,k) = i \) then
 \(\chi \)\(\leftarrow \chi \cup \{j\} \)
 end
 end
end

for \(i \leftarrow 1 \) to \(N \) do
 if \(\chi[i].size! = 0 \) then
 Select one solution \(x \) in \(\chi[i] \) with the best preference value in the \(i \)th row of \(\Delta_p \);
 \(\delta \) = \(\delta \cup \{x\} \)
 else
 \(\varphi.a.add(i) \)
end

return \(\delta \)

Algorithm 3: SELECTION(\(S\), \(\Delta_p\), \(\chi\))

Input: solution set \(S\), preference matrix \(\Delta_p\), list of related solutions of subproblems \(\chi\)
Output: solution set \(\delta\)

1) \(\delta \leftarrow \psi \);

for \(i \leftarrow 1 \) to \(N \) do
 if \(\chi[i].size! = 0 \) then
 Choose one solution \(x \) in \(\chi[i] \) with the best preference value in the \(i \)th row of \(\Delta_p \);
 \(\delta \leftarrow \delta \cup \{x\} \)
 else
 \(\varphi.a.add(i) \)
end

for \(i \leftarrow 1 \) to \(\varphi.size \) do
 Choose one unselected solution \(x \) in \(S \) with the best preference value in the \(\varphi.get(i) \)th row of \(\Delta_p \);
 \(\delta \leftarrow \delta \cup \{x\} \)
end

return \(\delta \)

Fig. 3. Example of the interrelationship between subproblems and solutions.

C. Selection Operator

Based on the interrelationship between subproblems and solutions, an agent selects its preferred solution as follows.

1) For a subproblem \(p_i\), \(i \in \{1, \ldots, N\}\), which has a nonempty \(\chi_i\), its hosted agent selects the best solution (in terms of the preference values in the \(i\)th row of \(\Delta_p\)) from \(\chi_i\) to be included in \(\delta\).

2) For a subproblem \(p_j\), \(j \in \{1, \ldots, N\}\), which has an empty \(\chi_j\), its hosted agent selects the best solution (in terms of the preference values in the \(j\)th row of \(\Delta_p\)) from the set of unselected solutions to be included in \(\delta\).

D. Computational Complexity Analysis

As the preliminary of interrelationship building, we first evaluate the mutual-preferences between subproblems and solutions. In particular, the evaluations of \(\Delta_p\) for all subproblems require \(O(mMN)\) computations. Moreover, in the worst case, the calculations of distances between subproblems and solutions, and the evaluations of niche counts for all subproblems cost \(O(mMN)\) and \(O(MN)\) computations, respectively. Therefore, the evaluations of \(\Delta_X\) for all solutions cost \(O(mMN)\) computations. Afterward, for each solution, the worst case complexity for selecting its related subproblems is \(O(N\log N)\). For each subproblem, the selection of its related solutions requires \(O(MK_d)\) comparisons. Therefore, the worst case complexity of the interrelationship building is \(\max\{O(MN\log N), O(MNK_d)\}\), whichever is larger. Based on the interrelationship, the selection of solutions for the next generation requires \(O(N\varphi)\) comparisons. In summary, the worst case complexity of the selection operator based on interrelationship is \(\max\{O(MN\log N), O(MNK_d)\}\).

E. Comparisons With MOEA/D-STM

As mentioned in Section III, this paper is a further attempt in [26]. This section discusses the similarities and differences between MOEA/D-IR and MOEA/D-STM. More specifically, these two algorithms have the following two similarities.

1) Both of them are developed upon the high-level framework introduced in Section III. The selection operators...
are developed from the perspectives of agents, and the convergence and diversity issues are treated separately and explicitly.

2) Both of them use the same metric to evaluate the preference of a solution with regard to a subproblem. These two algorithms have the following two differences.

1) The preference of a subproblem p with regard to a solution x is different. In MOEA/D-STM, only the perpendicular distance between x and the weight vector of p is considered, while, in this paper, the niche count of p, used to estimate the local density, is considered as an additional term to the perpendicular distance. This modification further improves the population diversity.

2) The selection mechanisms of these two algorithms are essentially different.

a) MOEA/D-STM uses a stable matching model to find a suitable matching between subproblems and solutions. The stable matching between subproblems and solutions achieves an equilibrium between their mutual-preferences. Thus, this selection mechanism strikes a balance between convergence and diversity simultaneously.

b) In MOEA/D-IR, the selection of an appropriate solution for each subproblem is based on the interrelationship between subproblems and solutions. In particular, the interrelationship, built upon the preference values of solutions with regard to subproblems, concerns the diversity issue; while the selection process, depending on the preference values of subproblems to solutions, concerns the convergence issue. In principle, this selection mechanism is a diversity first and convergence second strategy.

V. INCORPORATION INTO MOEA/D

In this section, we present how to incorporate the proposed selection operator, based on the interrelationship between subproblems and solutions, into the framework of MOEA/D. The pseudo-code of the resulted algorithm, denoted as MOEA/D-IR, is given in Algorithm 4. It is derived from MOEA/D-DRA [30], a MOEA/D variant with dynamic resource allocation scheme. MOEA/D-DRA was the winning algorithm in the CEC2009 MOEA competition [31]. It is worth noting that the difference between MOEA/D-IR and the original MOEA/D only lie in the selection process. Some important components of MOEA/D-IR are further illustrated in the following paragraphs.

A. Initialization

In case no prior knowledge about the search landscape at hand, the initial population $S_1 = \{x^1, \ldots, x^N\}$ can be randomly sampled from Ω via a uniform distribution. Since the exact ideal objective vector is usually unknown a priori, here we use its approximation, which is set as the minimum F-function value of each objective, i.e., $z_i^* = \min \{ f_i(x) | x \in S_1 \}$, for all $i \in \{1, \ldots, m\}$, instead. Analogously, the nadir objective vector is approximately set as $z_i^{nad} = \max \{ f_i(x) | x \in S_1 \}$, for all $i \in \{1, \ldots, m\}$.

We initialize a set of weight vectors $W = \{w^1, \ldots, w^N\}$ that are evenly spread in the objective space. These weight vectors also define the subproblems and their search directions. Here, we set the number of weight vectors be equal to the population size. The chosen of weight vectors can either be predefined in a structured manner or supplied preferentially by the user. In this paper, we use the method proposed in [29] to generate the evenly spread weight vectors on a unit simplex. Each element of a weight vector w takes a value from $[0/H, 1/H, \ldots, H/H]$, where H is the number of divisions along each coordinate. In total, the number of weight vectors is $N = (H+m-1)$. After the generation of W, the Euclidean

Algorithm 4: MOEA/D-IR

1. Initialize the population $S \leftarrow \{x^1, \ldots, x^N\}$, a set of weight vectors $W \leftarrow \{w^1, \ldots, w^N\}$, the ideal and nadir objective vectors z^*, z^{nad}.
2. Set $\text{neval} \leftarrow 0$, $\text{iteration} \leftarrow 0$;
3. for $i \leftarrow 1$ to N do
4. $B(i) \leftarrow \{i_1, \ldots, i_T\}$ where w^{i_1}, \ldots, w^{i_T} are the T closest weight vectors to w^i;
5. $\pi^i \leftarrow 1$;
6. end
7. while Stopping criterion is not satisfied do
8. Let all indices of the subproblems whose objectives are MOP individual objectives f_i form the initial I.
9. $Q \leftarrow \emptyset$;
10. for each $i \in I$ do
11. if $\text{uniform}(0, 1) < \delta$ then
12. $E \leftarrow B(i)$;
13. else
14. $E \leftarrow S$;
15. end
16. Randomly select three solutions x^{r1}, x^{r2}, and x^{r3} from E;
17. Generate a candidate \bar{x} by using the method described in Section V-B and $Q \leftarrow Q \cup \{x\}$;
18. Evaluate the F-function value of \bar{x};
19. Update the current ideal objective vector z^*;
20. Update the current nadir objective vector z^{nad};
21. $\text{neval}++$;
22. end
23. $R \leftarrow S \cup Q$;
24. $[\Delta_X, \Delta_P, \Psi_{d,l}] \leftarrow \text{COMPT PREF}(R, W, z^*, z^{nad})$;
25. $\chi \leftarrow \text{INTER RELATION}(\Delta_X, \Psi_{d,l})$;
26. $S \leftarrow \text{SELECTION}(R, \Delta_P, \chi)$;
27. $\text{iteration}++$;
28. if $\text{mod}($iteration, 30$) = 0$ then
29. $\text{Update the utility of each subproblem;}$
30. end
31. end
32. return S;
distance between any two weight vectors is computed. For each weight vector w^i, $i \in \{1, \ldots, N\}$, let $B(i) = \{i_1, \ldots, i_T\}$ be the neighborhood set of w^i, where w^{i_1}, \ldots, w^{i_T} are the T ($1 \leq T \leq N$) closest weight vectors of w^i.

B. Reproduction

The reproduction process is to generate the offspring population $Q_t = \{x^1, \ldots, x^N\}$, where t is the generation counter. In general, any genetic operator can serve this purpose. In this paper, we use the differential evolution (DE) operator [32] and polynomial mutation [33] as done in [23]. To be specific, an offspring solution $\tilde{x}_j = \{\tilde{x}_{j1}, \ldots, \tilde{x}_{jT}\}$ is generated as follows:

$$\tilde{x}_{j}^i = \begin{cases} x_{j}^i + F \times (x_{j}^r - x_{j}^l) & \text{if rand} < \text{CR} \text{ or } j = j_{\text{rand}} \quad (8) \\ x_{j}^i & \text{otherwise} \end{cases}$$

where CR and F are two control parameters of DE operator, rand is a random real number uniformly sampled from $[0, 1]$, j_{rand} is a random integer uniformly chosen from 1 to T, and x^i_k are three solutions randomly chosen from x. Then, the polynomial mutation acts upon each u^i_j to obtain the \tilde{x}_j^i.

$$\tilde{x}_{j}^i = \begin{cases} u_{j}^i + \sigma_j \times (b_j - a_j) & \text{if rand} < p_m \\ u_{j}^i & \text{otherwise} \end{cases}$$

with

$$\sigma_j = \begin{cases} (2 \times \text{rand})^{\frac{1}{\eta}} - 1 & \text{if rand} < 0.5 \\ 1 - (2 - 2 \times \text{rand})^{\frac{1}{\eta}} & \text{otherwise} \end{cases} \quad (10)$$

where $j \in \{1, \ldots, n\}$, the distribution index η and mutation rate p_m are two control parameters. a_j and b_j are the lower and upper bounds of the jth decision variable.

VI. EXPERIMENTAL SETTINGS

This section devotes to the experimental design for the performance investigations of our proposed MOEA/D-IR. At first, we give the descriptions of benchmark problems and performance metrics. Then, we briefly introduce six MOEAs used for comparisons. At last, we illustrate the parameter settings of the empirical studies.

A. Test Instances

Twenty-six unconstrained MOP test instances are employed here as the benchmark problems for empirical studies. To be specific, UF1 to UF10 are used as the benchmark in CEC2009 MOEA competition [31], and MOP1 to MOP7 are recently proposed in [16]. These test instances have distinct characteristics, and their PSs in the decision space are very complicated. We also consider WFG test suite [34], which has a wide range of problem characteristics, including nonseparable, deceptive, degenerate problems, mixed PF shape, and variable dependencies, for investigation. The number of decision variables of UF1 to UF10 is set to 30; for MOP1 to MOP7, the number of decision variables is set to 10; for WFG1 to WFG9, the number of objectives is set to 2, the numbers of position- and distance-related decision variables are set to 2 and 4, respectively. Interested readers are recommended to [16], [31], and [34] for more detailed information.

B. Performance Metrics

No unary performance metric can give a comprehensive assessment on the performance of an MOEA [35]. In our empirical studies, we consider the following two widely used performance metrics.

1) Inverted Generational Distance (IGD) Metric [36]: Let P^* be a set of points uniformly sampled along the PF, and S be the set of solutions obtained by an MOEA. The IGD value of S is calculated as

$$\text{IGD}(S, P^*) = \frac{\sum_{x \in P^*} \text{dist}(x, S)}{|P^*|} \quad (11)$$

where $\text{dist}(x, S)$ is the Euclidean distance between the point x and its nearest neighbor in S, and $|P^*|$ is the cardinality of P^*. The PF of the underlying MOP is assumed to be known a priori when using the IGD metric. In our empirical studies, 1000 uniformly distributed points are sampled along the PF for the bi-objective test instances, and 10,000 for three-objective ones, respectively.

2) HV Metric [14]: Let $z^* = (z^*_1, \ldots, z^*_m)^T$ be a reference point in the objective space that is dominated by all Pareto-optimal objective vectors. HV metric measures the size of the objective space dominated by the solutions in S and bounded by $z^*.$

$$\text{HV}(S) = \text{Vol}\left(\bigcup_{x \in S} [f_1(x), z^*_1] \times \ldots [f_m(x), z^*_m]\right) \quad (12)$$

where $\text{Vol}(\cdot)$ indicates the Lebesgue measure. In our empirical studies, $z^* = (2.0, 2.0)^T$ for bi-objective UF and MOP instances and $z^* = (2.0, 2.0, 2.0)^T$ for three-objective ones, respectively. For WFG instances, $z^* = (3.0, 5.0)^T.$

Both IGD and HV metrics can measure the convergence and diversity of S simultaneously. The lower is the IGD value (or the larger is the HV value), the better is the quality of S for approximating the entire PF. Comparison results are presented in the corresponding data tables, where the best mean metric values are highlighted in bold face with gray background. In order to have statistically sound conclusions, Wilcoxon’s rank sum test at a 5% significance level is conducted to compare the significance of difference between two algorithms.

C. Six MOEAs Used for Comparisons

In order to validate our proposed algorithm, six MOEAs are considered here for comparative studies.

1) MOEA/D-DRA [30]: It was the winning algorithm in CEC2009 MOEA competition. Different from the previous MOEA/D variants, in which every subproblem receives the same amount of computational effort, it dynamically allocates the computational resources to different subproblems based on their utilities.

2) MOEA/D-FRRMAB [37]: It is a recently proposed MOEA/D variant that applies a multiarmed bandit model to adaptively select reproduction operators based on their feedbacks from the search process.
3) MOEA/D-M2M [16]: It is a recently proposed MOEA/D variant, which decomposes an MOP into a set of simple multiobjective subproblems. Different from the other MOEA/D variants, each subproblem in MOEA/D-M2M has its own population and receives the corresponding computational effort at each generation.

4) MOEA/D-STM [26]: It is a recently proposed MOEA/D variant, which employs a stable matching model to coordinate the selection process of MOEA/D. It is worth noting that both MOEA/D-STM and MOEA/D-IR are developed upon the high-level framework introduced in Section III.

5) NSGA-II [6]: It is the most popular Pareto-based MOEA, which is characterized by the fast nondominated sorting procedure for emphasizing the convergence and the crowding distance for maintaining the diversity. As in [23], we use the reproduction method described in Section V-B to generate new offspring solutions.

6) HypE [38]: It is a well-known indicator-based MOEA, which uses the HV metric as the guideline of its selection process. In order to reduce the computational complexity in HV calculation, HypE employs Monte Carlo simulation to approximate the HV value.

D. General Parameter Settings

The parameters of MOEA/D-DRA, MOEA/D-FRRMAB, MOEA/D-M2M, MOEA/D-STM, NSGA-II, and HypE are set according to [6], [16], [26], [30], [37], and [38]. All these MOEAs are implemented in JAVA, except MOEA/D-M2M in MATLAB and HypE in ANSI C.4 The detailed parameter settings of our proposed MOEA/D-IR are summarized as follows.

1) Settings for Reproduction Operators: The mutation probability \(p_m = \frac{1}{n} \) and its distribution index \(\mu_m = 20 \) [4]. For UF and MOP instances, we set \(CR = 1.0 \) and \(F = 0.5 \) as recommended in [23], while for WFG instances, we set \(CR = 0.5 \) and \(F = 0.5 \).

2) Population Size: \(N = 600 \) for UF1 to UF7 instances, \(N = 1000 \) for UF8 to UF10 instances, \(N = 100 \) for MOP1 to MOP5 instances, and \(N = 300 \) for MOP6 and MOP7 instances, \(N = 100 \) for WFG1 to WFG9 instances.

3) Number of Runs and Termination Condition: Each algorithm is independently launched 20 times on each test instance. The termination condition of an algorithm is the predefined number of function evaluations, which is set to be \(300,000 \) for UF and MOP instances and 25,000 for WFG instances.

4) Number of Related Subproblems Chosen for a Solution: \(K_d = 2 \).

5) Number of Related Solutions Chosen for a Subproblem: \(\theta = 8 \).

6) Neighborhood Size: \(T = 20 \).

7) Probability to Select in the Neighborhood: \(\delta = 0.9 \).

3The source codes were developed upon the Java MOEA framework jMetal, which can be downloaded from http://www.jmetal.sourceforge.net

4The source code of HypE is downloaded from http://www.tik.ee.ethz.ch/sop/download-supplementary/hype/
converging to the true EF. It is worth noting that MOEA/D-IR and MOEA/D-STM show similar performance on many UF test instances. This can be explained as both of them are developed upon the high-level framework introduced in Section III. Their behaviors should share some similarities.

B. Performance Comparisons on MOP Instances

MOP instances, modified from the ZDT [39] and DTLZ [40] test suites, are recently proposed benchmark problems. As reported in [16], the state-of-the-art MOEAs, such as MOEA/D and NSGA-II, have significant difficulties on tackling these instances. The major difficulties of these MOP instances are their twisted search landscapes in the decision space, which make the population be easily trapped in some specific regions. In this case, they pose new challenges to MOEAs for balancing convergence and diversity during the search process. In our experiments, all parameters are kept the same as Section VI-D except $K_d = 4$ and $\theta = 30$. Tables III and IV compare the performances of all seven MOEAs on IGD and HV metrics, respectively. Similar to Section VII-A, we plot the solutions obtained in the run with the median IGD value of each MOEA for each MOP instance in the supplemental file. Comparing to the other algorithms, MOEA/D-IR and MOEA/D-M2M are the most competitive ones, as they show significantly better performance than the other competitors on all MOP instances. According to the Wilcoxon's rank sum test, 75 out of the 78 better results obtained by MOEA/D-IR are with statistical significance. From the plots in Figs. 7–9 of the supplemental file, we find that only MOEA/D-IR and MOEA/D-M2M can approximate the entire EF, while the other MOEAs can only approximate a couple of regions along the EF. For MOP1, MOP3, and MOP5, the nondominated fronts obtained by MOEA/D-IR are smoother than those found by MOEA/D-M2M. MOP2 and MOP3 have the same PF shape, but MOEA/D-M2M outperforms MOEA/D-IR on MOP2 instance. MOP4 is a modification of ZDT3 instance, whose EF contains three disconnected segments. Comparing to MOEA/D-M2M, solutions obtained by MOEA/D-IR cannot fully converge to the rightmost segment of the EF. It is also worth noting that both MOEA/D-IR and MOEA/D-M2M find some dominated solutions between the leftmost and middle segments of the EF. For MOP6, a three-objective instance developed from DTLZ1, solutions obtained by MOEA/D-IR have better convergence and spread over the EF than the other MOEAs. As for MOP7, a modification of DTLZ2, MOEA/D-M2M

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U^1</td>
<td>5.21E-2 (3.34E-3)</td>
<td>5.49E-2 (2.43E-3)</td>
<td>4.40E-1 (7.0E-4)</td>
<td>5.299E-2 (3.79E-3)</td>
<td>5.46E-3 (2.17E-3)</td>
<td>5.64E-3 (2.69E-3)</td>
<td></td>
</tr>
<tr>
<td>U^2</td>
<td>2.65E-2 (1.87E-3)</td>
<td>2.91E-2 (1.51E-3)</td>
<td>2.74E-1 (1.71E-2)</td>
<td>2.75E-2 (2.69E-3)</td>
<td>2.74E-3 (2.89E-4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U^3</td>
<td>1.04E-2 (3.15E-3)</td>
<td>1.17E-2 (3.14E-3)</td>
<td>6.18E-3 (1.77E-3)</td>
<td>3.74E-4 (4.3E-3)</td>
<td>1.12E-4 (1.61E-4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U^4</td>
<td>2.63E-2 (3.43E-3)</td>
<td>3.57E-2 (2.53E-3)</td>
<td>8.09E-2 (1.92E-2)</td>
<td>2.25E-1 (4.6E-3)</td>
<td>3.27E-2 (5.24E-3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U^5</td>
<td>6.61E-2 (3.49E-2)</td>
<td>9.61E-2 (2.42E-2)</td>
<td>7.03E-2 (3.13E-2)</td>
<td>7.12E-2 (5.82E-2)</td>
<td>2.62E-2 (3.59E-2)</td>
<td>3.98E-2 (1.03E-2)</td>
<td></td>
</tr>
<tr>
<td>U^6</td>
<td>2.65E-2 (1.34E-3)</td>
<td>1.05E-2 (1.31E-4)</td>
<td>9.24E-2 (2.42E-3)</td>
<td>2.12E-1 (2.45E-3)</td>
<td>4.32E-2 (4.24E-3)</td>
<td>1.45E-2 (7.32E-3)</td>
<td>9.91E-2 (2.81E-2)</td>
</tr>
<tr>
<td>U^7</td>
<td>4.33E-1 (3.55E-2)</td>
<td>4.55E-1 (4.75E-2)</td>
<td>7.29E-1 (7.61E-2)</td>
<td>8.05E-1 (1.76E-1)</td>
<td>5.15E-2 (7.65E-2)</td>
<td>8.16E-2 (1.77E-1)</td>
<td>2.58E-1 (9.14E-2)</td>
</tr>
</tbody>
</table>

Wilcoxon's rank sum test at a 0.05 significance level is performed between MOEA/D-IR and each of the other MOEAs. It denotes that the performance of the corresponding algorithm is significantly worse than or better than that of MOEA/D-IR, respectively. The best mean is highlighted in boldface with gray background.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>U^1</td>
<td>3.63E3 (1.45E3)</td>
<td>3.65E3 (1.75E3)</td>
<td>3.66E3 (1.44E3)</td>
<td>3.66E3 (1.74E3)</td>
<td>3.66E3 (1.64E3)</td>
<td>3.66E3 (1.64E3)</td>
<td></td>
</tr>
<tr>
<td>U^2</td>
<td>3.65E3 (1.33E3)</td>
<td>3.64E3 (1.31E3)</td>
<td>3.64E3 (1.02E3)</td>
<td>3.65E3 (1.44E3)</td>
<td>3.65E3 (1.82E3)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U^3</td>
<td>3.647E3 (9.6E-3)</td>
<td>3.647E3 (9.4E-3)</td>
<td>3.657E3 (1.31E3)</td>
<td>3.657E3 (1.29E3)</td>
<td>3.657E3 (1.29E3)</td>
<td>2.70E3 (1.52E3)</td>
<td></td>
</tr>
<tr>
<td>U^4</td>
<td>3.18E3 (1.32E2)</td>
<td>3.17E3 (1.28E2)</td>
<td>3.21E3 (1.79E3)</td>
<td>3.18E3 (1.54E2)</td>
<td>3.17E3 (1.58E3)</td>
<td>3.17E3 (1.68E3)</td>
<td></td>
</tr>
<tr>
<td>U^5</td>
<td>2.81E0 (1.56E1)</td>
<td>2.69E0 (1.97E1)</td>
<td>2.66E0 (1.10E1)</td>
<td>2.94E0 (1.84E2)</td>
<td>2.67E0 (1.21E2)</td>
<td>2.64E0 (1.03E1)</td>
<td></td>
</tr>
<tr>
<td>U^6</td>
<td>3.21E1 (9.6E2)</td>
<td>3.14E1 (1.3E1)</td>
<td>3.15E1 (1.4E1)</td>
<td>3.20E1 (5.3E2)</td>
<td>3.16E1 (7.5E1)</td>
<td>2.64E1 (1.03E1)</td>
<td></td>
</tr>
<tr>
<td>U^7</td>
<td>3.49E1 (2.6E2)</td>
<td>3.46E1 (3.8E2)</td>
<td>3.37E1 (4.8E2)</td>
<td>3.49E1 (3.97E4)</td>
<td>3.49E1 (3.97E4)</td>
<td>3.21E1 (3.49E4)</td>
<td></td>
</tr>
<tr>
<td>U^8</td>
<td>7.51E0 (8.4E1)</td>
<td>7.35E0 (1.41E1)</td>
<td>7.13E0 (4.1E1)</td>
<td>7.42E0 (2.91E3)</td>
<td>7.36E0 (1.53E2)</td>
<td>6.44E0 (4.40E2)</td>
<td></td>
</tr>
<tr>
<td>U^9</td>
<td>7.75E0 (3.4E1)</td>
<td>7.35E0 (2.5E1)</td>
<td>7.36E0 (2.5E1)</td>
<td>7.74E0 (3.64E3)</td>
<td>7.62E0 (1.87E1)</td>
<td>7.00E0 (2.73E1)</td>
<td></td>
</tr>
<tr>
<td>U^10</td>
<td>3.31E0 (4.6E1)</td>
<td>3.66E0 (2.9E1)</td>
<td>2.72E0 (1.2E2)</td>
<td>2.51E0 (1.5E1)</td>
<td>2.70E0 (5.1E1)</td>
<td>2.20E0 (3.6E1)</td>
<td></td>
</tr>
</tbody>
</table>

Wilcoxon's rank sum test at a 0.05 significance level is performed between MOEA/D-IR and each of the other MOEAs. It denotes that the performance of the corresponding algorithm is significantly worse than or better than that of MOEA/D-IR, respectively. The best mean is highlighted in boldface with gray background.
outperforms MOEA/D-IR. As shown in Fig. 9 of the supplemental file, there are large gaps on the nondominated fronts obtained by MOEA/D-IR and MOEA/D-M2M.

In contrast to the similar performance of MOEA/D-IR and MOEA/D-STM on UF instances, MOEA/D-IR performs significantly better than MOEA/D-STM on MOP instances. As discussed in Section IV-E, MOEA/D-STM tries to balance the convergence and diversity simultaneously, while the selection mechanism of MOEA/D-IR is a diversity first and convergence second strategy. In this case, MOEA/D-IR gives more emphasis on the diversity issue in selection. This is an essential requirement in algorithm design for solving these MOP instances, which pose significant challenges to the diversity preservation of a search process. As a consequence, the promising performance achieved by MOEA/D-IR benefit from this selection mechanism.

C. Performance Comparisons With Other Variants

To further investigate the underlying rationality of our proposed selection operator, we extend it into other two variants.

1) Variant-I: Instead of finding the appropriate solution for each subproblem based on the interrelationship between subproblems and solutions, this variant matches subproblems and solutions in a random manner. Specifically, for each subproblem, we randomly choose a solution from the hybrid population of parents and offspring as the next parent. It is worth noting that a solution is at most allowed to be chosen one time.

2) Variant-II: For each subproblem, this variant assigns the solution that owns the best aggregation function value to it. This is a purely greedy strategy, and different subproblems can be assigned with the same solution.

Similar to MOEA/D-IR, we instantiate two MOEAs based on the above two selection operator variants, respectively. Empirical studies are conducted on all UF, MOP, and WFG instances. Table V presents the performance comparisons of IGD and HV metrics. From the experimental results, it is clear that Variant-I is the worst among all these algorithms. Since solutions are merely selected in a random manner, this variant makes the algorithm degenerate to a purely random search, which is obviously not effective for tackling problems with complicated properties. As for Variant-II, MOEA/D-IR outperforms it in 30 out of 34 comparisons, where all these better results are with statistical significance. As discussed in Section III, an agent has two requirements on its selected solutions, i.e., convergence and diversity. From the perspectives of subproblems and solutions, the achievements of these two requirements are respectively treated as their mutual-preferences. The inferior performance of Variant-II should be attributed to its purely greedy strategy, in which only the convergence requirement has been explicitly considered, while the diversity issue has been ignored. This results in a severe loss of population diversity. In contrast, our proposed selection operator takes the mutual-preferences of subproblems and solutions.

Due to the page limit, the experimental results on WFG instances are presented in the supplemental file of this paper.
D. Impacts of Parameter Settings

There are two major parameters in the proposed selection operator.

1) K_d: This parameter determines how many subproblems are considered to be related with a solution. It controls the trade-off between exploration and exploitation. A large K_d results in an explorative behavior, while a small K_d leads to an exploitative behavior.

2) ϑ: This parameter decides the niche size of a subproblem. It controls the selection pressure on the local diversity of the subregion specified by a subproblem. A large ϑ, which results in a large niche for a subproblem, tends to increase the local diversity of the corresponding subregion. In contrast, a small ϑ, which leads to a small niche, might decrease the local diversity of the corresponding subregion.

To study how these two parameters influence the behavior of our proposed selection operator, we have considered four values for K_d: 1, 2, 4, and 10 and six values for ϑ: 1, 2, 4, 8, 20, and 30. In total, there are 24 combinations of K_d and ϑ. In our experiments, all parameters are kept the same as Section VI-D, except the settings of K_d and ϑ. Twenty independent runs have been conducted for each combination of K_d and ϑ on each test instance introduced in Section VI-A. Considering the page limit, we only present the plots of the median IGD values found by 24 different combinations of K_d and ϑ on UF4, UF8, MOP1, and MOP4 instances in Fig. 4. The complete parameter sensitivity studies on all 26 MOP instances can be found in the supplemental file. From Fig. 4 and Figs. 11 and 12 of the supplemental file, we find that different parameter combinations lead to distinct performances of MOEA/D-IR.

Wilcoxon’s rank sum test at a 0.05 significance level is performed between MOEA/D-IR and the two variants. 1 and 4 denotes that the performance of the corresponding algorithm is significantly worse than or better than that of MOEA/D-IR, respectively. The best mean is highlighted in boldface with gray background.
when both K_d and ϑ are small (e.g., $K_d = \vartheta = 1$), is usually inferior to the case that K_d is small (e.g., $K_d = 1$) but ϑ is large (e.g., $\vartheta = 30$). This is because the behavior of the selection operator is prone to be exploitative when K_d is small. On the other hand, a large ϑ setting, which is able to increase the local diversity and provides some explorative characteristics, exerts a complementary effect to the selection operator. These observations demonstrate the underlying mechanism of our proposed selection operator in trading off the convergence and diversity of the search process.

VIII. CONCLUSION

In MOEA/D, each subproblem is handled by an agent in a collaborative manner. The selection of MOEA/D can therefore be regarded as the process of choosing an appropriate solution by each agent. As an agent has two requirements, i.e., convergence and diversity, on its selected solution, it is judicious to treat these two requirements explicitly and simultaneously in designing selection mechanisms. This paper presents a simple yet effective attempt along this direction. It builds an interrelationship between subproblems and solutions, according to their mutual-preferences. Based on this interrelationship, each subproblem is able to be allocated with its desired solution, which is thus selected as the parent for the next generation. This selection operator trades off the mutual-preferences between subproblems and solutions, thus the convergence and diversity of the search process. Extensive experimental studies, conducting on several difficult problems with complicated PS shapes, demonstrate the effectiveness of our proposed MOEA/D-IR.

As for future directions, we make the following comments.

1) The effectiveness of recombinator combination operators, such as crossover, usually relies on the selection of mating parents. However, most recombinator operators choose mating parents in a random manner. This random mating scheme might lead to the inefficiency for offspring reproduction and premature convergence when tackling complicated problems. Exploitation versus exploration dilemma is a major issue in offspring reproduction. It is interesting to extend our idea in this paper to build the interrelationship among solutions for mating selection, which can help to balance the exploration and exploitation of the search process.

2) Multiobjective optimization is usually used to assist decision makers (DMs) to find the solutions that fit their preferences. In this case, the agents might not be interested in optimizing all the subproblems that spread along the entire PF. Instead, they might be more interested in exploiting information around the subproblems that fit the characteristics of the DMs’ preferences.

3) Many-objective optimization problem has become a major concern in evolutionary multiobjective optimization [20]. It is interesting to investigate the scalability of our proposed method for complicated problems with a large number of objectives.

The source codes and supplemental file of this paper can be obtained via request to the first author or downloaded from http://www.cs.cityu.edu.hk/~51888309/.

REFERENCES

Ke Li received the B.Sc. and M.Sc. degrees in computer science and technology from Xiangtan University, Xiangtan, China, in 2007 and 2010, respectively, and the Ph.D. degree in computer science from the City University of Hong Kong, Hong Kong, in 2014.

He is currently a Post-Doctoral Research Associate with the Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA. His current research interests include the evolutionary multiobjective optimization, surrogate modeling, and machine learning.

Sam Kwong (M’93–SM’04–F’13) received the B.S. and M.S. degrees in electrical engineering from the State University of New York, Buffalo, NY, USA, and the University of Waterloo, Waterloo, ON, Canada, in 1983 and 1985, respectively, and the Ph.D. degree from the University of Hagen, Hagen, Germany, in 1996.

From 1985 to 1987, he was a Diagnostic Engineer with Control Data Canada, Mississauga, Canada. He joined Bell Northern Research Canada as a member of Scientific Staff. In 1990, he became a Lecturer with the Department of Electronic Engineering, the City University of Hong Kong, Hong Kong, where he is currently a Professor and the Head of the Department of Computer Science. His current research interests include evolutionary computation, video coding, pattern recognition, and machine learning.

Dr. Kwong is an Associate Editor of the *IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS*, the *IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS*, and the *Information Sciences* journal.

Qingfu Zhang (M’01–SM’06) received the B.Sc. degree in mathematics from Shanxi University, Taiyuan, China, in 1984, the M.Sc. degree in applied mathematics, and the Ph.D. degree in information engineering, both from Xidian University, Xi’an, China, in 1991 and 1994, respectively.

He is currently leading the Metaheuristic Optimization Research Group with the City University of Hong Kong, Hong Kong. He is a Professor at the Department of Computer Science, City University of Hong Kong, a Professor at the School of Computer Science and Electronic Engineering, University of Essex, Essex, U.K., and a Changjiang Visiting Chair Professor at Xidian University. His current research interests include evolutionary computation, optimization, neural networks, and data analysis and their applications. He has authored several research publications and holds two patents.

Dr. Zhang was the recipient of the 2010 IEEE Transactions on Evolutionary Computation Outstanding Paper Award. His multiobjective optimization algorithm developed in his group won the Unconstrained Multiobjective Optimization Algorithm Competition at the Congress of Evolutionary Computation 2009. He is an Associate Editor of the *IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION* and the *IEEE TRANSACTIONS ON CYBERNETICS*. He is also an Editorial Board Member of three other international journals.

Kalyanmoy Deb (F’13) received the bachelor’s degree in mechanical engineering from the Indian Institute of Technology Kharagpur, Kharagpur, India, and the master’s and Ph.D. degrees from the University of Alabama, Tuscaloosa, AL, USA, in 1985, 1989, and 1991, respectively. He is a Koenig Endowed Chair Professor at Department of Electrical and Computer Engineering, Michigan State University (MSU), East Lansing, MI, USA. He also holds joint appointments with the Department of Mechanical Engineering and the Department of Computer Science and Engineering at MSU. He was at the Indian Institute of Technology (IIT) Kanpur, Kanpur, India. His research interests include evolutionary optimization and their application in optimization, modeling, and machine learning. He has published over 375 research papers, with 63 500 Google Scholar citations and an H-index of 84. More information about his research contribution can be found at http://www.eegr.msu.edu/~kdeb

Prof. Deb was the recipient of the Infosys Prize, the TWAS Prize in Engineering Sciences, the Cajastur Mambani Prize, the Distinguished Alumni Award from IIT Kharagpur, the Edgeworth-Pareto Award, the Bhatnagar Prize in Engineering Sciences, and the Bessel Research Award from Germany. He is also an Editorial Board Member of 20 major international journals. He is a fellow of American Society of Mechanical Engineers and three science academies in India.