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1 Proof of Theorem 1

Proof. Let us consider the scenario of increasing the number of objectives at first, where we prove
the theorem by contradiction. At time step t1, we assume that x1 and x2 are in PSt1 . Accordingly,
F(x1, t1) and F(x2, t1) are in PFt1 . At time step t2, we increase the number of objectives by one,
i.e., m(t2) = m(t1)+1. Assume that x1 is still in PSt2 whereas x2 is not, thus we have x1 �t2 x2. In
other words, ∀i ∈ {1, · · · ,m(t1),m(t2)} (i.e., ∀i ∈ {1, · · · ,m(t1),m(t1) + 1}), fi(x1, t2) ≤ fi(x2, t2);
and ∃j ∈ {1, · · · ,m(t1),m(t1) + 1}, fj(x1, t2) < fj(x

2, t2). This contradicts the assumption that
x1 and x2 are non-dominated from each other at time step t1. Then, we conclude that PFt1 is a
subset of PFt2 when increasing the number of objectives.

Now let us consider the scenario of decreasing the number of objectives. At time step t1, we
assume that x1 and x2 are in PSt1 . Accordingly, F(x1, t1) and F(x2, t1) are in PFt1 . Further-
more, we assume that ∀i ∈ {1, · · · ,m(t1) − 1}, we have fi(x

1, t1) ≤ fi(x
2, t1) and fm(t1)(x

1, t1) >
fm(t1)(x

2, t1). At time step t2, we decrease the number of objectives by one, i.e., m(t2) = m(t1)−1.
If fm(t1) is removed at time step t2, we can derive that x1 �t2 x2. That is to say x2 is not in PFt2 .
On the other hand, if fi, where i ∈ {1, · · · ,m(t1) − 1}, is removed at time step t2, we can derive
that x1 and x2 are still non-dominated from each other. In other words, x1 and x2 are still in PFt2 .
All in all, we conclude that PFt1 is a superset of PFt2 . �

∗This is the supplementary document for the corresponding paper, which is published in IEEE Trans. on Evolu-
tionary Computation, Vol 21, Issue 1, pp: 157-171, 2018.
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2 Mathematical Definitions of Benchmark Problems

This section provides the mathematical definitions of the dynamic multi-objective benchmark prob-
lems used in our empirical studies. Note that these benchmark problems are developed from the
classic DTLZ benchmark suite [1]. Furthermore, in addition to the changing number of objectives,
F5 and F6 are also accompanied by a time-dependent change of the shape or position of the PF or
PS.

Table 1: Mathematical Definitions of Dynamic Multi-Objective Benchmark Problems

Problem Instance Definition Domain

F1

f1 = (1 + g)0.5
∏m(t)−1
i=1 xi

[0, 1]fj=2:m(t)−1 = (1 + g)0.5(
∏m(t)−j
i=1 xi)(1− xm(t)−j+1)

fm(t) = (1 + g)0.5(1− x1)
g = 100[n−m(t) + 1 +

∑n
i=m(t)((xi − 0.5)2 − cos(20π(xi − 0.5)))]

F2

f1 = (1 + g)0.5
∏m(t)−1
i=1 cos(xiπ/2)

[0, 1]fj=2:m(t)−1 = (1 + g)0.5(
∏m(t)−j
i=1 cos(xiπ/2))(sin(xm(t)−j+1π/2))

fm(t) = (1 + g) sin(x1π/2)
g =

∑n
i=m(t)(xi − 0.5)2

F3 as F2, except g is replaced by the one from F1 [0, 1]

F4 as F2, except xi is replaced by xαi , where i ∈ {1, · · · ,m(t)− 1}, α > 0 [0, 1]

F5
as F2, except g =

∑n
i=m(t)(xi −G(t̄))2

[0, 1]
where G(t̄) = | sin(0.5πt̄)|, t̄ = 1

nt̄
b τ
τt̄
c

F6
as F2, except g = G(t̄) +

∑n
i=m(t)(xi −G(t̄))2

[0, 1]where G(t̄) = | sin(0.5πt̄)|, t̄ = 1
nt̄
b τ
τt̄
c

and xi is replaced by x
F (t̄)
i , where i ∈ {1, · · · ,m(t)− 1} and F (t̄) = 1 + 100 sin4(0.5πt̄)
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3 Descriptions of Different Compared Algorithms

In our empirical studies, four state-of-the-art EMO algorithms are used for comparisons: the dy-
namic version of the elitist non-dominated sorting genetic algorithm (DNSGA-II) [2] and MOEA/D
with Kalman Filter prediction (MOEA/D-KF) [3]; and their corresponding stationary baseline
NSGA-II [4] and MOEA/D [5]. They were chosen because of their popularity and good performance
in both dynamic and static environments. Note that there is a significant amount of developments
in the EMO field, e.g. [6–28]. Comparisons with the baseline algorithms are important. Because we
want to check whether the dynamic algorithms outperform their static counterparts or not when
handling the DMOP with a changing number of objectives. The following paragraphs provide some
brief descriptions of these compared algorithms.

• DNSGA-II : To make the classic NSGA-II suitable for handling dynamic optimization prob-
lems, [2] suggested to replace some population members with either randomly generated
solutions or mutated solutions upon existing ones once a change occurs. As reported in [2],
the prior one performs better on DMOPs with severely changing environments while the lat-
ter one may work well on DMOPs with moderate changes. In our experiments, we adopt the
prior DNSGA-II version in view of its slightly better performance reported in [2].

• MOEA/D-KF : This is a recently proposed prediction-based strategy that employs a linear
discrete time Kalman Filter to model the movements of the PS in the dynamic environment.
Thereafter, this model is used to predict the new location of the PS when a change occurs.
Empirical results in [3] has shown that MOEA/D-KF is very competitive for the dynamic opti-
mization and it outperforms the other state-of-the-art predictive strategies, e.g., [29] and [30].

• NSGA-II : It at first uses non-dominated sorting to divide the population into several non-
domination levels. Solutions in the first several levels have a high priority to be selected as
the next parents. The exceeded solutions are trimmed according to the density information.

• MOEA/D : This is a representative of the decomposition-based EMO methods. Its basic idea
is to decompose the original MOP into several subproblems, either single-objective scalar
functions or simplified MOPs. Thereafter, it employs some population-based techniques to
solve these subproblems in a collaborative manner.
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4 Settings of the Weight Vectors

This section provides the settings of the number of weight vectors used in our empirical studies.
Note that we use the method developed in [16] to generate weight vectors when the number of
objectives is larger than 4.

Table 2: Number of Weight Vectors

m # of weight vectors

2 300 (H = 299)

3 300 (H = 23)

4 286 (H = 10)

5 280 (H1 = 6, H2 = 4)

6 273 (H1 = 5, H2 = 2)

7 294 (H1 = 4, H2 = 3)

H is the number of divisions on each coordinate. Two-layer weight vector generation method
is applied for 5- to 7-objective cases. H1 and H2 is the number of divisions for the boundary
and inside layer, respectively.
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Figure 1: IGD trajectories across the whole evolution process.
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Figure 2: The rank of IGD obtained by different algorithms at each time step.
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Figure 3: Variation of the population distribution when increasing the number of objectives from
2 to 3.
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Figure 4: Variation of the population distribution when decreasing the number of objectives from
4 to 3.
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5 Effects of the Update Mechanisms

As discussed in Section III-B of our paper, the update mechanisms are used to maintain the
complementary effects between the CA and the DA. The CA keeps a continuously strong selection
pressure for the population convergence; while the DA maintains a set of well diversified solutions.
In order to validate the importance of the three different components of DTAEA, we developed
three DTAEA variants as follows:

• DTAEA-v1: this variant modifies DTAEA by removing the restricted mating selection mech-
anism proposed in Section III-C of our paper. In particular, now the mating parents are
respectively selected from the CA and the DA without considering the population distribu-
tion.

• DTAEA-v2: this variant modifies DTAEA by removing the reconstruction mechanism pro-
posed in Section III-A of our paper. In other words, it does not make any response to the
changing environment.

• DTAEA-v3: this variant merely uses the update mechanisms to maintain the CA and the DA
whereas it does not make any response to the changing environment. In addition, it does not
use the restricted mating selection mechanism as DTAEA-v1.

We conduct the experiments on F1 to F6 according to the same experimental settings introduced
in Section IV of our paper. Table III and Table IV of the supplementary file give the median and IQR
values according to the MIGD and MHV metrics. From these results we can see that the original
DTAEA, consisted of all three components, has shown clearly better performance than the other
three variants. More specifically, as shown in Table III and Table IV, the performance of DTAEA-v3
is the worst among all three variants. This observation is reasonable as DTAEA-v3 neither responds
to the changing environment nor takes advantages of the complementary effect of the CA and the
DA for offspring generation. The performance of DTAEA-v2 is slightly better than DTAEA-v3.
Therefore, we can see that even without any response to the changing environment, the restricted
mating selection mechanism can also provide some guidance to the search process. As for DTAEA-
v1, we can see that the performance can be significantly improved by using the reconstruction
mechanism proposed in Section III-A of our paper to respond to the changing environment. This
superiority is more obvious when the frequency of change is high. By comparing the results between
DTAEA-v1 and the original DTAEA, we can clearly see the importance of taking advantages of the
complementary effect of the CA and the DA for offspring generation. All in all, we can conclude
that all three components of DTAEA are of significant importance for handling the DMOP with a
changing number of objectives.
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Table 3: Performance Comparisons of DTAEA and its Three Variants on MIGD Metric

τt
DTAEA-v1 DTAEA-v2 DTAEA-v3 DTAEA

MIGD R MIGD R MIGD R MIGD R

F1

25 5.05E-4(1.85E-4) 1.9 7.14E-4(1.72E-4)† 2.8 7.29E-4(2.40E-4)† 2.9 5.50E-4(1.99E-4) 2.3
50 3.95E-4(2.49E-5) 2.5 4.02E-4(1.54E-5)† 2.6 4.04E-4(1.19E-5)† 2.8 3.88E-4(1.03E-5) 2.1
100 3.72E-4(3.97E-6)† 3.5 3.64E-4(3.09E-6) 2 3.65E-4(2.43E-6) 2.7 3.64E-4(2.49E-6) 1.8
200 3.59E-4(1.07E-6)† 3.4 3.56E-4(1.20E-6) 1.8 3.59E-4(2.46E-6)† 3.4 3.55E-4(1.41E-6) 1.5

F2

25 1.28E-3(5.20E-6)† 2.6 1.39E-3(1.97E-5)† 2.8 1.40E-3(4.08E-5)† 3.1 1.26E-3(4.58E-6) 1.5
50 1.26E-3(1.59E-6)† 3.4 1.25E-3(1.76E-5) 2 1.25E-3(2.77E-5)† 2.8 1.25E-3(3.26E-6) 1.9
100 1.23E-3(1.88E-6)† 3.4 1.22E-3(2.24E-6)† 1.9 1.23E-3(2.32E-6)† 3 1.22E-3(1.30E-6) 1.7
200 1.21E-3(1.86E-6)† 3.3 1.20E-3(1.31E-6)† 1.8 1.21E-3(1.73E-6)† 3.2 1.20E-3(2.20E-6) 1.7

F3

25 1.92E-3(9.48E-4) 1.9 2.63E-3(1.29E-3)† 3 2.32E-3(8.94E-4) 2.9 2.06E-3(1.34E-3) 2.2
50 1.32E-3(4.29E-5)‡ 2.1 1.42E-3(5.20E-5) 2.8 1.44E-3(5.95E-5) 2.9 1.39E-3(1.06E-4) 2.3
100 1.26E-3(5.32E-6)† 3.1 1.25E-3(1.38E-5) 2.1 1.25E-3(1.87E-5)† 2.7 1.24E-3(9.04E-6) 2
200 1.23E-3(3.09E-6)† 3 1.22E-3(2.43E-6)† 2.1 1.23E-3(5.26E-6)† 3.2 1.22E-3(4.17E-6) 1.8

F4

25 1.29E-3(3.40E-5)‡ 1.7 6.82E-3(2.18E-7)† 3.3 6.82E-3(1.87E-7)† 3.3 1.32E-3(7.80E-5) 1.7
50 1.25E-3(2.17E-6)† 2 6.81E-3(8.96E-8)† 3.3 6.81E-3(7.24E-8)† 3.3 1.24E-3(4.05E-6) 1.4
100 1.22E-3(1.58E-6)† 2 6.81E-3(1.93E-7)† 3.3 6.81E-3(1.05E-7)† 3.4 1.22E-3(1.50E-6) 1.4
200 1.21E-3(1.85E-6)† 2.1 6.81E-3(1.58E-4)† 3.3 6.81E-3(3.71E-4)† 3.4 1.20E-3(1.35E-6) 1.2

F5

25 2.52E-3(9.09E-5)‡ 1.8 7.69E-3(5.69E-4)† 3.3 7.66E-3(3.22E-4)† 3.2 2.61E-3(9.71E-5) 1.6
50 2.02E-3(6.94E-5)† 1.8 1.35E-2(3.26E-4)† 3.5 1.34E-2(2.17E-4)† 3.5 1.91E-3(6.69E-5) 1.2
100 1.49E-3(1.72E-5)† 1.7 1.80E-2(4.43E-4)† 3.5 1.79E-2(9.68E-4)† 3.5 1.45E-3(2.98E-5) 1.3
200 1.38E-3(1.17E-5)† 1.7 1.95E-2(5.39E-4)† 3.4 1.97E-2(3.73E-4)† 3.6 1.36E-3(6.77E-6) 1.3

F6

25 2.90E-3(1.68E-4) 1.6 1.11E-2(7.24E-4)† 3.5 1.12E-2(5.90E-4)† 3.5 2.98E-3(1.76E-4) 1.4
50 2.22E-3(7.36E-5)† 1.7 1.61E-2(6.16E-4)† 3.5 1.59E-2(7.97E-4)† 3.5 2.08E-3(5.08E-5) 1.3
100 1.57E-3(2.31E-5) 1.6 2.10E-2(9.39E-4)† 3.6 2.10E-2(9.48E-4)† 3.4 1.56E-3(2.25E-5) 1.4
200 1.46E-3(1.07E-5) 1.6 2.23E-2(7.09E-4)† 3.6 2.19E-2(6.50E-4)† 3.4 1.46E-3(2.09E-5) 1.4

R denotes the global rank assigned to each algorithm by averaging the ranks obtained at all time steps. Wilcoxon’s rank
sum test at a 0.05 significance level is performed between DTAEA and each of DTAEA-v1, DTAEA-v2 and DTAEA-v3. †

and ‡ denote the performance of the corresponding algorithm is significantly worse than and better than that of DTAEA,
respectively. The best median value is highlighted in boldface with gray background.
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Table 4: Performance Comparisons of DTAEA and its Three Variants on MHV Metric

τt
DTAEA-v1 DTAEA-v2 DTAEA-v3 DTAEA
MHV R MHV R MHV R MHV R

F1

25 99.85%(4.60E-3) 1.7 99.57%(3.05E-3) 3 99.45%(6.72E-3)† 3.3 99.7%(6.03E-3) 2
50 100.00%(1.40E-4)† 2.1 99.98%(1.86E-4)† 2.7 99.98%(2.71E-4)† 3.3 100.0%(8.39E-5) 1.8
100 100.00%(1.82E-5)† 2.5 100.00%(2.95E-5)† 2.4 100.00%(2.75E-5)† 3.4 100.0%(1.84E-5) 1.7
200 100.00%(1.66E-5)† 2.5 100.00%(2.19E-5)† 2.2 100.00%(2.65E-5)† 3.1 100.0%(2.69E-5) 2.1

F2

25 94.37%(7.52E-5)† 2.6 93.94%(1.08E-3)† 2.7 93.86%(1.94E-3)† 3.5 94.4%(6.26E-5) 1.2
50 94.42%(2.46E-5)† 2.9 94.42%(2.21E-4)† 2.4 94.38%(2.65E-4)† 3.5 94.4%(3.09E-5) 1.2
100 94.45%(8.64E-6)† 3.3 94.46%(7.38E-6)† 1.9 94.45%(1.34E-5)† 3.4 94.5%(8.88E-6) 1.5
200 94.46%(4.63E-6)† 3.4 94.46%(5.29E-6)† 1.8 94.46%(8.98E-6)† 3.2 94.5%(4.03E-6) 1.7

F3

25 91.08%(6.51E-2) 1.7 89.86%(7.13E-2) 3 89.84%(4.89E-2) 3.3 90.6%(9.47E-2) 1.9
50 94.24%(2.74E-3) 1.9 93.90%(1.66E-3)† 2.8 93.83%(2.62E-3)† 3.2 94.0%(3.66E-3) 2.1
100 94.39%(3.78E-4)† 2.5 94.40%(2.96E-4)† 2.4 94.38%(5.41E-4)† 3.3 94.4%(3.32E-4) 1.8
200 94.43%(1.60E-4)† 2.9 94.44%(1.52E-4)† 2.1 94.44%(2.72E-4)† 3.2 94.4%(1.26E-4) 1.8

F4

25 94.39%(1.29E-4) 1.9 79.48%(5.82E-5)† 3.3 79.47%(6.49E-5)† 3.3 94.4%(1.60E-4) 1.5
50 94.44%(1.76E-5)† 2.1 79.47%(1.25E-4)† 3.3 79.47%(1.24E-4)† 3.3 94.4%(1.16E-5) 1.3
100 94.46%(8.42E-6)† 2.1 79.46%(2.01E-4)† 3.3 79.47%(1.21E-4)† 3.3 94.5%(3.26E-6) 1.2
200 94.46%(8.77E-6)† 2 79.47%(1.22E-2)† 3.3 79.47%(3.27E-2)† 3.4 94.5%(4.19E-6) 1.2

F5

25 90.37%(5.17E-3)‡ 1.8 65.36%(2.23E-2)† 3.4 64.82%(8.67E-3)† 3.4 89.4%(6.64E-3) 1.5
50 93.53%(1.34E-3)† 1.8 46.58%(1.64E-2)† 3.5 46.18%(2.98E-2)† 3.5 93.7%(1.25E-3) 1.2
100 94.53%(4.58E-4)† 1.8 15.51%(3.19E-2)† 3.5 16.54%(3.35E-2)† 3.5 94.6%(3.62E-4) 1.2
200 94.73%(3.03E-4)† 1.8 11.56%(1.35E-2)† 3.4 11.09%(6.06E-3)† 3.6 94.8%(1.84E-4) 1.2

F6

25 89.31%(1.18E-2) 1.7 51.61%(4.21E-2)† 3.5 51.54%(2.37E-2)† 3.5 89.1%(9.72E-3) 1.3
50 92.93%(1.19E-3)† 1.8 33.26%(1.84E-2)† 3.5 33.80%(2.49E-2)† 3.5 93.7%(1.45E-3) 1.2
100 93.92%(5.32E-4)† 1.8 7.99%(8.41E-3)† 3.5 8.22%(7.57E-3)† 3.5 94.5%(3.50E-4) 1.2
200 94.14%(3.41E-4)† 1.8 7.92%(7.58E-3)† 3.5 8.07%(9.59E-3)† 3.5 94.7%(3.39E-4) 1.2

R denotes the global rank assigned to each algorithm by averaging the ranks obtained at all time steps. Wilcoxon’s rank
sum test at a 0.05 significance level is performed between DTAEA and each of DTAEA-v1, DTAEA-v2 and DTAEA-v3. †

and ‡ denote the performance of the corresponding algorithm is significantly worse than and better than that of DTAEA,
respectively. The best median value is highlighted in boldface with gray background.
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6 Performance Comparisons on a Different Changing Sequence

In Section V-A and Section V-B of our paper, the experiments only consider the scenarios where the
number of objectives increases or decreases by one at each time step. A natural question is: how is
the performance of our proposed algorithm under the circumstance where the number of objectives
changes in a different sequence? Without loss of generality, this further experiment considers the
time varying number of objectives m(t) as follows:

m(t) =


3, t = 1

m(t− 1) + 2, t ∈ [2, 3]

m(t− 1)− 2, t ∈ [4, 5]

m(t− 1)− 1, t = 6

(1)

where t ∈ {1, · · · , 6} is a discrete time. Here we also consider four different frequencies of change,
i.e., τt is as 25, 50, 100 and 200, respectively. From the empirical results shown in Table 5 and Ta-
ble 6, we can clearly see that our proposed DTAEA is the best optimizer on almost all comparisons
(92 out of 96 for MIGD and 88 out 96 for MHV). Similar to the observations from the previous
sections, the performance of DTAEA might not be stable under a high frequency of change; while
its performance becomes constantly competitive with the increase of τt.

Table 5: Performance Comparisons on MIGD Metric with a Different Changing Sequence.

τt
NSGA-II DNSGA-II MOEA/D MOEA/D-KF DTAEA

MIGD R MIGD R MIGD R MIGD R MIGD R

F1

25 2.97E-3(3.40E-3)† 2.7 2.00E-3(3.56E-3)† 2.8 2.40E-3(8.80E-3)† 3.8 1.67E-2(1.81E-2)† 4.3 1.10E-3(6.03E-4) 1.4

50 1.31E-2(1.26E-2)† 3.8 1.33E-2(1.21E-2)† 3.8 7.78E-4(2.92E-4)† 3 1.80E-3(2.10E-3)† 3.5 3.38E-4(3.38E-5) 1

100 2.54E-2(3.50E-2)† 4 3.23E-2(3.94E-2)† 4.1 5.73E-4(4.71E-5)† 2.8 7.27E-4(4.18E-4)† 3.2 2.92E-4(1.75E-6) 1

200 3.11E-3(4.08E-2)† 4.3 1.25E-2(3.68E-2)† 4.3 5.02E-4(2.16E-4)† 2.4 6.39E-4(1.89E-3)† 3 2.90E-4(2.10E-6) 1

F2

25 1.41E-3(5.72E-5)† 3.2 1.48E-3(1.11E-4)† 3.4 1.81E-3(8.28E-5)† 3.5 1.82E-3(4.91E-5)† 3.9 1.07E-3(5.22E-6) 1

50 1.54E-3(1.01E-4)† 3.8 1.63E-3(1.28E-4)† 4 1.70E-3(6.46E-5)† 2.9 1.71E-3(6.81E-5)† 3.3 1.06E-3(3.42E-6) 1

100 1.82E-3(1.32E-4)† 4.1 1.90E-3(9.04E-5)† 4.2 1.62E-3(2.88E-5)† 2.7 1.64E-3(2.74E-5)† 3.1 1.04E-3(1.83E-6) 1

200 1.98E-3(1.03E-4)† 4.1 1.96E-3(1.38E-4)† 4.2 1.58E-3(3.77E-5)† 2.8 1.56E-3(2.12E-5)† 2.8 1.03E-3(1.34E-6) 1.1

F3

25 8.26E-3(9.99E-3)† 2.8 8.09E-3(5.22E-3)† 2.8 4.88E-3(4.31E-3)† 3.8 2.11E-2(4.73E-2)† 4.2 2.66E-3(3.29E-3) 1.4

50 1.33E-2(1.64E-2)† 3.4 1.09E-2(1.84E-2)† 3.4 2.79E-3(6.58E-4)† 3.2 5.05E-3(6.62E-3)† 3.8 1.20E-3(1.04E-4) 1.1

100 9.02E-2(5.18E-2)† 3.9 9.16E-2(4.43E-2)† 4 2.42E-3(2.19E-3)† 2.8 2.41E-3(1.63E-3)† 3.2 1.06E-3(8.73E-6) 1

200 1.51E-1(1.28E-1)† 4.4 1.76E-1(9.13E-2)† 4.4 1.69E-3(5.03E-5)† 2.4 2.01E-3(2.33E-4)† 2.9 1.05E-3(7.16E-6) 1

F4

25 2.64E-3(4.22E-4)† 2.5 2.79E-3(3.27E-4)† 3 4.08E-3(7.27E-4)† 4.2 3.91E-3(3.17E-4)† 4.3 1.10E-3(2.29E-5) 1

50 1.77E-3(3.40E-4)† 2.8 2.26E-3(3.41E-4)† 3.5 3.44E-3(5.08E-4)† 4 3.03E-3(3.74E-4)† 3.8 1.06E-3(1.24E-3) 1

100 2.19E-3(2.30E-4)† 3.2 2.29E-3(3.31E-4)† 3.4 3.04E-3(3.42E-4)† 3.8 3.14E-3(3.88E-4)† 3.7 1.04E-3(2.78E-6) 1

200 2.26E-3(1.92E-4)† 3.3 2.24E-3(1.88E-4)† 3.1 2.71E-3(1.56E-4)† 3.8 2.68E-3(8.39E-4)† 3.8 1.03E-3(2.42E-6) 1

F5

25 7.14E-3(3.50E-3)† 3.9 3.87E-3(5.66E-4)† 3.5 2.53E-3(2.74E-4)‡ 2.5 2.30E-3(2.67E-4)‡ 2.5 2.94E-3(3.79E-4) 2.7

50 2.83E-3(2.91E-4)† 3.6 3.27E-3(3.15E-4)† 4.4 1.99E-3(9.74E-5)† 2.6 1.94E-3(1.17E-4)† 2.4 1.84E-3(8.27E-5) 2

100 1.72E-3(2.23E-4)† 3 1.84E-3(1.50E-4)† 3.8 1.80E-3(7.46E-5)† 3.3 1.74E-3(1.32E-4)† 3.3 1.29E-3(1.26E-5) 1.6

200 1.57E-3(1.12E-4)† 2.8 1.83E-3(1.01E-4)† 4.1 1.68E-3(3.56E-5)† 3.2 1.64E-3(7.30E-5)† 3 1.19E-3(1.29E-5) 1.9

F6

25 8.61E-3(1.74E-3)† 4.4 5.03E-3(5.70E-4)† 3.5 2.58E-3(3.54E-4)‡ 2.3 2.57E-3(3.77E-4)‡ 2.6 3.04E-3(1.71E-4) 2.2

50 2.92E-3(2.43E-4)† 4 3.72E-3(6.24E-4)† 3.8 2.24E-3(2.14E-4)† 2.5 2.38E-3(1.57E-4)† 2.7 2.05E-3(1.03E-4) 1.9

100 2.69E-3(3.24E-4)† 3.9 2.62E-3(1.58E-4)† 4.3 1.89E-3(9.26E-5)† 2.5 1.98E-3(1.20E-4)† 3 1.35E-3(1.34E-5) 1.4

200 2.89E-3(3.07E-4)† 4.3 2.53E-3(1.01E-4)† 4 1.87E-3(7.80E-5)† 2.4 1.85E-3(7.47E-5)† 2.9 1.27E-3(2.42E-5) 1.4

R denotes the global rank assigned to each algorithm by averaging the ranks obtained at all time steps. Wilcoxon’s rank sum test at a 0.05

significance level is performed between DTAEA and each of NSGA-II, DNSGA-II, MOEA/D and MOEA/D-KF. † and ‡ denote the performance
of the corresponding algorithm is significantly worse than and better than that of DTAEA, respectively. The best median value is highlighted
in boldface with gray background.
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