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Abstract: Decomposition has become an increasingly popular technique for evolutionary
multi-objective optimisation (EMO). A decomposition-based EMO algorithm is usually designed to
approximate a whole Pareto-optimal front (PF). However, in practice, the decision maker (DM) might
only be interested in her/his region of interest (ROI), i.e., a part of the PF. Solutions outside that might
be useless or even noisy to the decision-making procedure. Furthermore, there is no guarantee to find
the preferred solutions when tackling many-objective problems. This paper develops an interactive
framework for the decomposition-based EMO algorithm to lead a DM to the preferred solutions of
her/his choice. It consists of three modules, i.e., consultation, preference elicitation and optimisation.
Specifically, after every several generations, the DM is asked to score a few candidate solutions in a
consultation session. Thereafter, an approximated value function, which models the DM’s preference
information, is progressively learned from the DM’s behavior. In the preference elicitation session, the
preference information learned in the consultation module is translated into the form that can be used
in a decomposition-based EMO algorithm, i.e., a set of reference points that are biased toward to the
ROI. The optimisation module, which can be any decomposition-based EMO algorithm in principle,
utilises the biased reference points to direct its search process. Extensive experiments on benchmark
problems with three to ten objectives fully demonstrate the effectiveness of our proposed method for
finding the DM’s preferred solutions.

Keywords: Multi-criterion decision making, interactive multi-objective optimisation, decomposition-
based technique, evolutionary computation.

1 Introduction

Multi-objective optimisation problems (MOPs) involve optimising more than one objective function
simultaneously. They typically arise in various fields of science (e.g., [1–3]) and engineering (e.g. [4–6])
where optimal decisions need to be taken in the presence of trade-offs between two or more conflicting
objectives. For example, in portfolio management, maximising the expected value of portfolio returns
and minimising the potential risk are two typical conflicting objectives.

Due to the population-based property, evolutionary algorithms (EAs) have been widely recog-
nized as a major approach for multi-objective optimization. Over the last three decades and beyond,
much effort has been dedicated to developing evolutionary multi-objective optimization (EMO) algo-
rithms [7–30], such as non-dominated sorting genetic algorithm II (NSGA-II) [31], improved strength
Pareto EA (SPEA2) [32] and multi-objective EA based on decomposition (MOEA/D) [33], to find a
set of well-converged and well-diversified efficient solutions that approximate the whole Pareto-optimal
front (PF). Nevertheless, the ultimate goal of MO is to help the decision maker (DM) find solutions
that meet at most her/his preferences. Supplying a DM with a large amount of widely spread trade-
off alternatives not only increases her/his workload, but also provides many irrelevant or even noisy
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information to the decision-making procedure. Moreover, due to the curse of dimensionality, the per-
formance of EMO algorithms degenerate with the number of objectives. In addition, the number of
points to represent a PF grows exponentially with the number of objectives, thereby requiring a large
population size to run an EMO algorithm. Besides, there is a severe cognitive obstacle for the DM to
comprehend a high-dimensional PF.

To alleviate the above problems associated with the a posteriori decision-making procedure in the
traditional EMO, it is more practical to incorporate the DM’s preference information into the search
process. This allows the computational efforts to concentrate on the region of interest (ROI) and
thus has a better approximation therein. In general, the preference information can be incorporated
a priori or interactively. If the preference information (in the form of one or more reference points,
reference directions or light beams) is elicited a priori, it is used to guide the population toward the
ROI. For example, the cone-domination based EMO [34], biased niching based EMO [35,36], reference
point based EMO [37], the reference direction based EMO [38] and the light beam based EMO [39]
are attempts along this direction. Moreover, in [40], Greenwood et al. derived a linear value function
from a given ranking of a few alternatives to model the DM’s preference information. Thereafter,
this linear value function is used as the fitness function in an EMO algorithm to guide the population
toward the ROI. Note that, in the a priori approach, the DM only interacts at the beginning of an
EMO run. However, it is non-trivial to faithfully represent the preference information before solving
the MOP at hand.

In practice, eliciting the preference information in an interactive manner, which has been studied in
the multi-criterion decision-making (MCDM) field for over half a century, seems to be more interesting.
This enables the DM to progressively learn and understand the characteristics of the MOP at hand
and adjust their elicited preference information. Consequently, solutions are effectively driven toward
the ROI. In principle, the above mentioned a priori EMO approaches can also be used in an interactive
EMO approach in an iterative manner (e.g., [38] and [39]). Specifically, in the first round, the DM
can elicit certain preference information (in the form of reference points, reference directions or other
means), and it is used in an EMO algorithm to find a set of preferred Pareto-optimal solutions.
Thereafter, a few representative solutions can be shown to the DM. If these solutions are satisfied
by the DM, they will be used as the outputs and the iterative procedure terminates. Otherwise,
the DM will adjust her/his preference information accordingly and it will be used in another EMO
run. Alternatively, the DM can be involved to periodically provide preference information as the EMO
iterations are underway [41]. In particular, the preference information is progressively learned as value
functions with the evolution of solutions. Since the DM gets more frequent chance to provide new
information, the overall process is more DM-oriented. Moreover, the DM may feel more in charge and
more involved in the overall optimization-cum-decision-making process.

During recent years, especially after the developments of MOEA/D and NSGA-III [42], the
decomposition-based EMO methods have become increasingly popular for the a posteriori MO. Gen-
erally speaking, by specifying a set of reference points1, the decomposition-based EMO methods at
first decompose the MOP at hand into multiple subproblems, either with scalar objective or simplified
multi-objective. Then, a population-based technique is applied to solve these subproblems in a col-
laborative manner. Under some mild conditions, the optimal solutions of all subproblems constitute a
good approximation to the PF. It is not difficult to understand that the distribution of the reference
points is essential for a decomposition-based EMO method. It not only implies a priori assumption of
the PF’s geometrical characteristics, but also determines the distribution of Pareto-optimal solutions.
There have been some studies on how to generate desired reference points. For example, [43] suggested
a structured method to generate evenly distributed reference points on a canonical simplex. To adapt
to the irregular PFs, such as disconnected or mixed shapes and disparately scaled objectives, some
adaptive reference point adjustment methods (e.g., [44] and [45]) have been developed to progressively
adjust the distribution of reference points on the fly. To integrate the DM’s preference information
into the decomposition-based EMO methods, a natural idea is to make the distribution of the refer-
ence points be biased toward the ROI. Although it sounds intuitive, in practice, how to obtain the

1In this paper, we use the term reference point without loss of generality, although some other papers, e.g, the original
MOEA/D [33], also use the term weight vector interchangeably.
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appropriate reference points that accommodate to the DM’s preference information is far from trivial.
Most recently, there have been some limited initiatives on adjusting the distribution of the reference
points according to the DM’s preference information (e.g., [46] and [47]). However, most, if not all, of
them specify the DM’s preference information in a priori manner.

This paper develops a simple interactive framework for the decomposition-based EMO algorithms
that can progressively learn an approximated value function (AVF) from the DM’s behaviour and
thus guide the population toward the ROI. This framework consists of three interdependent modules:
optimisation, consultation and preference elicitation. Specifically,

• The optimisation module can be any decomposition-based EMO algorithm in principle. It uses
the preference information elicited from the preference elicitation module to find the preferred
solutions. Periodically, it supplies the consultation module with a few candidates for learning
an AVF.

• The consultation module is the interface by which the DM interacts with the optimisation
module. It simulates the DM that assigns a score to each candidate supplied by the optimisation
module. Then, by using the scored candidates found so far as the training data, a machine
learning algorithm is applied to find an AVF that models the DM’s preference information.

• The preference elicitation module aims at translating the preference information learned from
the consultation module in the form that can be used in a decomposition-based EMO algorithm.
In particular, it changes the distribution of reference points to be focused in the ROI.

In empirical studies, our proposed interactive framework is embedded in two widely used decomposition-
based EMO algorithms, i.e., MOEA/D and NSGA-III. Their effectiveness for finding preferred Pareto-
optimal solutions are validated on several benchmark problems with three to ten objectives.

The rest of this paper is organised as follows. Section 2 provides some preliminaries of this pa-
per. Section 3 describes the technical details of the interactive framework step by step. Afterwards,
in Section 4 and 5, the effectiveness of the proposed method is empirically investigated on various
benchmark problems with three to ten objectives. Section 6 concludes this paper and provides some
future directions.

2 Preliminaries

In this section, we first provide some basic definitions of MO. Then, to facilitate the descriptions
of our proposed interactive framework for the decomposition-based EMO algorithms, we start from
describing the working mechanisms of two widely used decomposition-based EMO algorithms, i.e.,
MOEA/D and NSGA-III. At the end, we briefly overview the past studies of interactive MO.

2.1 Basic Definitions

The MOP considered in this paper is formulated as:

minimize F(x) = (f1(x), · · · , fm(x))T

subject to x ∈ Ω
, (1)

where x = (x1, · · · , xn)T is a n-dimensional decision vector and F(x) is an m-dimensional objective
vector. Ω is the feasible set in the decision space Rn and F : Ω→ Rm is the corresponding attainable
set in the objective space Rm. Without considering the DM’s preference information, given two
solutions x1,x2 ∈ Ω, x1 is said to dominate x2 if and only if fi(x

1) ≤ fi(x
2) for all i ∈ {1, · · · ,m}

and F(x1) 6= F(x2). A solution x ∈ Ω is said to be Pareto-optimal if and only if there is no solution
x′ ∈ Ω that dominates it. The set of all Pareto-optimal solutions is called the Pareto-optimal set
(PS) and their corresponding objective vectors form the PF. Accordingly, the ideal point is defined as
z∗ = (z∗1 , · · · , z∗m)T , where z∗i = min

x∈PS
fi(x), and the nadir point is defined as znd = (znd1 , · · · , zndm )T ,

where zndi = max
x∈PS

fi(x), ∀i ∈ {1, · · · ,m}.
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2.2 Decomposition-based EMO algorithms

2.2.1 MOEA/D

The basic idea of MOEA/D is to decompose the original MOP into several subproblems and it uses a
population-based technique to solve these subproblems in a collaborative manner. In particular, with
respect to a reference point w, this paper uses the Tchebycheff function [13,48] as a subproblem which
is defined as:

minimize g(x|w, z∗) = max
1≤i≤m

|fi(x)− z∗i |/wi

subject to x ∈ Ω
(2)

where z∗ is the ideal point. The general working mechanisms of MOEA/D is given as the following
three-step process.

Step 1: Initialize a population of solutions P := {xi}Ni=1, a set of reference points W := {wi}Ni=1 and
their neighbourhood structure. Randomly assign each solution to a reference point.

Step 2: For i = 1, · · · , N , do

Step 2.1: Randomly selects a required number of mating parents from wi’s neighbourhood.

Step 2.2: Use crossover and mutation to reproduce offspring xc.

Step 2.3: Update the subproblems within the neighbourhood of wi by xc.

Step 3: If the stopping criteria is met, then stop and output the population. Otherwise, go to Step 2.

We would like to make some remarks on some important ingredients of the above MOEA/D
procedure.

• In Step 1, we use the classic method developed by Das and Dennis [43] to initialise a set of
evenly distributed reference points from a canonical simplex. Furthermore, the neighbourhood
structure B(i) of each reference point wi, i ∈ {1, · · · , N}, contains its T closest reference points,
where T = 20 as suggested in [49]. Fig. 1 gives two examples of reference point distribution and
the neighbourhood of a reference point in the two- and three-objective cases.
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(a) 2-D case.
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(b) 3-D case.

Figure 1: Illustration of reference points generated by the Das and Dennis’ method [43]. The black
circle represents the neighbourhood of a particular reference point.

• In Step 2.1, to improve the exploration ability, there is a small probability δ = 0.1 to select
mating parents from the whole population as suggested in [49].

• In Step 2.3, xc can update a particular reference point w if and only if g(xc|w, z∗) < g(x|w, z∗),
where x is the solution originally associated with w.

• In Step 2.3, xc also has a small probability δ = 0.1 to update a subproblem from W , rather than
merely in B(i).
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2.2.2 NSGA-III

This is an extension of NSGA-II for handling many-objective optimisation problems. The subproblem
in NSGA-III is to optimise the local crowdedness of the region associated with its corresponding
reference point. In particular, it replaces the crowding distance with a reference point based density
estimation. The general working mechanisms of NSGA-III is given as follows.

Step 1: Initialise a population of solutions P := {xi}Ni=1, a set of reference points W := {wi}Ni=1.

Step 2: Use crossover and mutation to generate a population of offspring Q.

Step 3: Use non-dominated sorting [31] to divide R := P
⋃
Q into several non-domination fronts

F1, F2, · · · .

Step 4: Starting from F1, solutions are stored in a temporary archive P till its size for the first
time equals or exceeds N , where P :=

⋃`
i=1 Fi. In particular, F` is the last acceptable non-

domination front. If the size of P equals N , then let P := P and go to Step 7; otherwise go
to Step 5.

Step 5: Let P :=
⋃`−1
i=1 Fi. Associate each member of F` with its closest reference point.

Step 6: A randomly chosen solution in the least crowded reference point is added into P . This process
iterates till the size of P equals N .

Step 7: If the stopping criteria is met, then stop and output P . Otherwise, go to Step 2.

We would like to make some remarks on some important ingredients of the above NSGA-III
procedure.

• In Step 5, the association of a solution with a reference point is according to the shortest
perpendicular distance between this solution and the reference line, starting from the origin
and passing through the corresponding reference point. Fig. 2 gives a simple illustration of
association in a two-dimensional scenario.
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Figure 2: Illustration of solution association of NSGA-III.

• In Step 6, the crowdedness of a reference point is counted as the number of solutions associated
with it. For example, as shown in Fig. 2, the crowdedness of w3 is 3. Note that the crowdedness
information is updated after choosing a solution from F` and add it to P .

2.3 Past Studies on Progressively Interactive Methods

As mentioned in Section 1, there have been a plethora of studies to approximate DM’s preferred
solutions a priori, posteriori or interactively. Since this paper mainly investigates the frequent in-
volvements of a DM with an EMO algorithm, we do not intend to review a priori and posteriori
approaches, except to encourage the interested readers to look at some recent survey papers [50–52].
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Some recent studies periodically asked the DM to provide her/his preference information upon
one or more pairs of alternative points found by an EMO algorithm. The information is then used
to derive a value function that represents the DM’s preference information. For example, Phelps and
Köksalan [41] proposed an interactive EA that progressively constructs a linear value function, which
is a weighted sum of objectives, by periodically asking the DM to rank pairs of solutions. Thereafter,
the resulting value function is then used as the selection criteria of an EA to rank solutions. However,
due to the use of a linear model, it might not be effective when the DM’s “golden” value function
is nonlinear. In [53], Fowler et al. proposed to use convex preference cones to model the DM’s
preference information. In their developed interactive EMO algorithm, such cones are used to partially
rank the population members and thus facilitate the fitness assignment. Instead of merely using a
single value function, Jaszkiewicz [54] proposed to use a set of linear value functions, each of which is a
weighted sum of objectives, chosen from several randomly generated value functions to represent DM’s
preference information. Due to the use linear value function, it remains the same hallmark as [41] in
handling nonlinear problems, especially when the DM’s preferred solutions lie on a non-convex part
of the PF.

In [55], Deb et al. developed a polynomial value function model that is expected to be useful
for both linear and nonlinear problems. Specifically, to obtain the preference information, the DM
is asked to rank a set of well distributed candidates periodically. Based on this order information, a
polynomial value function model is fitted by solving a computationally intensive sequential quadratic
programming procedure. Once a most discriminating value function has been identified, it is used
to modify the Pareto dominance principle in NSGA-II in order to emphasise the reproduction and
survival of preferred solutions. Moreover, the polynomial value function is also used to determine
whether the overall optimisation procedure should be terminated or not by performing a local search
procedure.

In [56], Battiti and Passerini developed an interactive EMO algorithm that uses the support
vector machine (SVM) for ranking [57] to represent complex value functions. Specifically, the DM
is asked to rank (at least partially) some selected alternatives during the interaction session. This
ranking information is then used to train a SVM, and the derived value function is used to replace the
crowding distance in NSGA-II. The empirical results suggested that the training of a SVM requires a
relatively large number of solutions, whereas a small number of interactions seem to be sufficient to
approximate the DM’s golden value function.

In [58] and [59], Branke et al. proposed an interactive EMO algorithm by ordinal regression which
is able to build preference models compatible with preference information from holistic comparisons
of solutions. During the interaction session, the DM is asked to rank a single pair of solutions. This
information is used to update the additive value function model that is used in subsequent generations
to rank incomparable solutions in terms of the Pareto dominance principle.

In [60], Korhonen et al. developed an interactive MO algorithm that progressively learns the DM’s
preference information by asking the DM to make a set of binary comparisons among several solutions.
Specifically, a class of value functions are identified by solving a linear programming problem upon the
preference information obtained from the interaction. In particular, they considered three classes of
value functions, i.e., linear, quasi-concave and no pre-assumed forms. Based on this classification, they
defined a dominance structure and determined the expected probabilities of finding new and better
solutions either by search or choosing from several samples. Note that this algorithm terminates
if the probability of finding better solutions is low and thus just outputs the currently found most
preferred solution. As an extension, [61] developed a sampling-based method to calculate the expected
probabilities of finding better solutions.

3 Proposed Method

As shown in Fig. 3, our proposed interactive framework consists of three interdependent modules:
consultation, preference elicitation and optimisation. In principle, the optimisation module can be any
decomposition-based EMO algorithm. It uses the preference information provided by the preference
elicitation module to find the DM’s preferred solutions. In addition, it periodically supplies the
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consultation module with a few incumbent candidates for scoring. The consultation module is the
interface by which the DM interacts with the optimisation procedure. It progressively learns an
AVF, which represents the DM’s preference information, from the DM’s behaviour. The preference
elicitation module translates the preference information, learned from the consultation module, into
the form that can be used in the optimisation module. In the following paragraphs, we will introduce
the technical details of each module step by step.

Consultation
Preference 
Elicitation

Optimization

Figure 3: Flowchart of the interactive framework.

3.1 Consultation Module

The consultation module is the interface where the DM interacts with, and expresses her/his preference
information to the optimisation module. In principle, there are various ways to represent the DM’s
preference information. In this paper, we assume that the DM’s preference information is represented
as a value function. It assigns a solution a score that represents its desirability to the DM. The
consultation module mainly aims to progressively learn an AVF that approximates the DM’s golden
value function, which is unknown a priori, by asking the DM to score a few incumbent candidates. We
argue that it is labor-intensive to consult the DM every generation. Furthermore, as discussed in [56],
consulting the DM at the early stage of the evolution might be detrimental to the decision-making
procedure, since the DM can hardly make a reasonable judgement on poorly converged solutions. In
this paper, we fix the number of consultations. Before the first consultation session, the EMO algorithm
runs as usual without considering any DM’s preference information. Afterwards, the consultation
session happens every τ > 1 generations.

To approximate the DM’s preference information, we need to address two major questions: 1)
which solutions can be used for scoring? and 2) how to learn an appropriate AVF?

3.1.1 Scoring

A näıve strategy is to ask the DM to score all solutions in a population. In this case, the search is
completely driven by the DM. This obviously increases her/his cognitive load thus has a high risk to
cause her/his fatigue. Instead, during each consultation session, we only ask the DM to score a limited
number (say 1 ≤ µ� N) of incumbent candidates chosen from the current population.

If it is at the first consultation session, we first initialise another µ “seed” reference points, which
can either be generated by the Das and Dennis’ method [43] or chosen from the reference points
initialised in the optimisation module. Afterwards, for each of these seed reference points, we find
the nearest neighbour from the reference points initialised in the optimisation module. Then, the
solutions associated with these selected reference points are used as the initial incumbent candidates.
Otherwise, at the latter consultation sessions, we use the AVF learned from the last consultation
session to score the current population. The µ solutions having the best AVF values are deemed as
the ones that are satisfied by the DM most. Accordingly, these µ solutions are used as the incumbent
candidates.
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3.1.2 Learning

In principle, many off-the-shelf machine learning algorithms can be used to learn the AVF. In this
paper, we treat it as a regression problem and use the Radius Basis Function network (RBFN) [62]
to serve this purpose. In particular, RBFN, a single-layer feedforward neural network, is easy to train
and its performance is relatively insensitive to the increase of the dimensionality. The idea of using
RBFN as an approximation function was first proposed by Hardy [63] to fit irregular topological data.

Let D = {(F(xi), ψ(xi))}Mi=1 denote the dataset for training the RBFN. The objective values of a
solution xi are the inputs and its corresponding value function ψ(xi) scored by the DM is the output.
In particular, we accumulate every µ solutions scored by the DM to form D. An RBFN is a real-valued
function Φ : Rm → R. Various RBFs can be used as the activation function of the RBFN, such as
Gaussian, splines and multi-quadrics. In this paper, we consider the following Gaussian function:

ϕ = exp(−‖F(x)− c‖
σ2

), (3)

where σ > 0 is the width of the Gaussian function. Accordingly, the AVF can be calculated as:

Φ(x) = ω0 +
NR∑
i=1

ωi exp(−‖F(x)− ci‖
σ2

), (4)

where NR is the number of RBFs, each of which is associated with a different center ci, i ∈ {1, · · · ,NR}.
ωi is the network coefficient, and ω0 is a bias term, which can be set to the mean of the training data or
0 for simplicity. In our experiment, we use the RBFN program newrb provided by the Neural Network
Toolbox from the MATLAB2.

3.2 Preference Elicitation Module

As introduced in Section 2.2, the decomposition-based EMO algorithm is originally designed to use a
set of evenly distributed reference points W = {wi}Ni=1 to approximate the whole PF. When consid-
ering the DM’s preference information, the ROI becomes a partial region of the PF. A natural idea,
which translates the DM’s preference information into the form that can be used in a decomposition-
based EMO algorithm, is to adjust the distribution of reference points. Specifically, the preference
elicitation module uses the following four-step process to achieve this purpose.

Step 1: Use Φ(x) learned in the consultation module to score each member of the current population
P .

Step 2: Rank the population according to the scores assigned in Step 1, and find the top µ solutions.
Reference points associated with these solutions are deemed as the promising ones, and store

them in a temporary archive WU := {wUi}µ′i=1.

Step 3: For i = 1 to µ′ do

Step 3.1: If Φ(xUi) < g(xbest|wbest, z∗), then go to Step 3.2. Otherwise, move the remaining
reference points toward wbest as follows:

wj = wj + η × (wbestj − wj), (5)

where j ∈ {1, · · · ,m}. Terminate the for-loop and go to Step 4.

Step 3.2: Find the dN−µ′µ′ e closest reference points to wUi according to their Euclidean dis-
tances.

Step 3.3: Move each of these reference points toward wUi according to equation (5), where
wbest is replaced with wUi.

Step 3.4: Temporarily remove these reference points from W and go to Step 3.

2https://uk.mathworks.com/help/nnet/ug/radial-basis-neural-networks.html
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Step 4: Output the adjusted reference points as the new W .

We would like to make some remarks on some important ingredients of the above process.

• In Step 1, the score of a solution, evaluated by the AVF learned in the consultation module,
indicates its satisfaction with respect to the DM’s preference information.

• In the decomposition-based EMO algorithm, each solution should be associated with a reference
point. Therefore, in Step 2, the rank of a solution indicates the importance of its associated
reference point with respect to the DM’s preference information. The reference points stored
in WU are indexed according to the ranks of their associated solutions. In other words, wU1

represents the most important reference point, and so on.

• Furthermore, since a reference point might be associated with more than one solution (e.g., in
NSGA-III), the number of promising reference points µ′ might be smaller than µ, i.e., 1 ≤ µ′ ≤ µ.

• Step 3 is the main crux to adjust the distribution of reference points. The major purpose of this
process is to move the other reference points toward those µ′ promising ones. In particular, each
of these promising reference points attracts around dN−µ′µ′ e companions.

• In Step 3.1, xUi represents the solution associated with wUi. xbest represents the best solution
evaluated by the DM at the last consultation session, while wbest represents its associated refer-
ence point. The major purpose of Step 3.1 is to alleviate the risk of moving the reference points
to a wrongly predicted promising one.

• In equation (5), the step size η controls the convergence rate toward the promising reference
point.

• Step 3.2 is similar to a clustering process, while we give the reference point, which has a higher
rank, a higher priority to attract its companions.

To have a better understanding of this preference elicitation process, Fig. 4 gives an example in a
two-objective case. In particular, three promising reference points are highlighted by red circles. wU1

has the highest priority to attract its companions, and so on.
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Figure 4: Illustration of the preference elicitation process.

3.3 Optimization Module

The optimisation module is the search engine that progressively finds the DM’s preferred solutions.
In principle, any decomposition-based EMO algorithm can be used to serve this purpose. For the
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proof of principle purpose, this paper chooses MOEA/D and NSGA-III as the baseline algorithms,
whose working mechanisms have been introduced in Section 2.2. Note that MOEA/D and NSGA-III
can be used in a plug-in manner without any modification except the reference points. In particular,
the reference points used in MOEA/D and NSGA-III need to be adjusted by the preference elicita-
tion module after every consultation session. As for the offspring reproduction, we use the popular
simulated binary crossover (SBX) [64] and polynomial mutation [65] for the proof of principle purpose.

4 Experimental Settings

To validate the effectiveness of our proposed interactive framework, we test the performance on bench-
mark problems with three to ten objectives. The interactive framework is embedded in MOEA/D and
NSGA-III, and is respectively denoted as I-MOEA/D-PLVF and I-NSGA-III-PLVF. The widely used
DTLZ [66] test problems are chosen to form the benchmark suite. Note that the DTLZ test problems
are scalable to any number of objectives. Their formal definitions are described in Section I of the
supplementary document.

The parameter settings of our proposed interactive framework are summarized as follows:

• number of incumbent candidates presented to the DM for scoring: µ = 2m + 1 at the first
consultation session and µ = 10 afterwards;

• number of generations between two consecutive consultation sessions: τ = 25;

• number of reference points and population size settings are given in Table 1 as suggested in [18];

• number of function evaluations (FEs) is given in Table 2 as suggested in [18].

• step size of the reference point update used in equation (5): η = 0.5;

• crossover probability and the distribution index for the SBX operator: pc = 1.0 and ηc = 30;

• mutation probability and the distribution index for the polynomial mutation operator: pm = 0.9
and ηm = 20;

Table 1: Number of reference points and population size.

m ] of reference points I-NSGA-III-PLVF I-MOEA/D-PLVF
3 91 92 91
5 210 212 210
8 156 156 156
10 275 276 275

Table 2: Number of FEs for DTLZ test problems.

Test instance m = 3 m = 5 m = 8 m = 10
DTLZ1 400 600 750 1,000
DTLZ2 250 350 500 750
DTLZ3 1,000 1,000 1,000 1,500
DTLZ4 600 1,000 1,250 2,000

Each cell only gives the number of generations. The corresponding number of FEs is each tuple times the corresponding
population size of I-NSGA-III-PLVF as shown in Table 1.

As mentioned in [59], the empirical comparison of interactive EMO methods is tricky since a model
of the DM’s behavior is required yet unfortunately sophisticated to represent. In this paper, we use
a pre-specified golden value function, which is unknown to an interactive EMO algorithm, to play
as an artificial DM. Specifically, the DM is assumed to minimize the following nonlinear Tchebycheff
function:

ψ(x) = max
1≤i≤m

|fi(x)− z∗|/w∗i , (6)

where z∗ is set to be the origin in our experiments, and w∗ is the utopia weights that represents
the DM’s emphasis on different objectives. We consider two types of w∗: one targets the preferred
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solution on the middle region of the PF while the other targets the preferred solution on one side
of the PF, i.e., biased toward a particular extreme. Since a m-objective problem has m extremes,
there are m different choices for setting the biased w∗. In our experiments, we randomly choose one
for the proof-of-principle study. Since the Tchebycheff function is used as the value function and the
analytical forms of the test problems are known, we can use the method suggested in [18] to find the
corresponding Pareto-optimal solution (also known as the DM’s “golden” point) with respect to the
given w∗. Detailed settings of w∗ and the corresponding DM’s golden point are given in Section II of
the supplementary document.

To evaluate the performance of an interactive EMO algorithm for approximating the ROI, we
consider using the approximation error of the obtained population P with respect to the DM’s golden
point zr as the performance metric. Specifically, it is calculated as:

E(P ) = min
x∈P

dist(x, zr) (7)

where dist(x, zr) is the Euclidean distance between zr and a solution x ∈ P in the objective space.
To demonstrate the importance of using the DM’s preference information, we also compare I-

MOEA/D-PLVF and I-NSGA-III-PLVF with their corresponding baseline algorithms without consid-
ering the DM’s preference information. In our experiments, we run each algorithm independently 21
times with different random seeds. In the corresponding table, we show the results in terms of the me-
dian and the interquartile range (IQR) of the approximation errors obtained by different algorithms.
To have a statistical sound comparison, we use the Wilcoxon signed-rank test with a 95% confidence
level to validate the significance of the better results.

5 Empirical Results

Our experiments are divided into three parts. First, we validate the effectiveness of our proposed
interactive framework for finding the DM’s preferred solution. Then, we empirically investigate the
influence of the parameters associated with the interactive framework. At last, we investigate a
scenario with random noises in the decision-making procedure.

5.1 Performance Comparisons on DTLZ Test Problems

Table 3: Performance comparisons of the approximation errors (median and the corresponding IQR)
obtained by I-NSGA-III-PLVF and I-MOEA/D-PLVF versus their baseline MOEA/D and NSGA-III
on DTLZ test problems.

DTLZ1 DTLZ2 DTLZ3 DTLZ4
m ROI I-MOEA/D-PLVF MOEA/D I-MOEA/D-PLVF MOEA/D I-MOEA/D-PLVF MOEA/D I-MOEA/D-PLVF MOEA/D

3
c 0.00042(2.87E-3) 0.03104(3.18E-3) 0.01026(1.78E-2) 0.10300(6.35E-3) 0.00072(7.26E-3) 0.10553(1.59E-3) 0.01302(2.78E-2) 0.10421(1.89E-3)
b 0.00147(2.87E-3) 0.03103(3.30E-3) 0.00883(1.09E-2) 0.09103(2.56E-3) 0.00281(1.09E-2) 0.08678(7.75E-3) 0.00763(8.76E-3) 0.09469(8.07E-3)

5
c 0.00417(1.73E-2) 0.05262(1.90E-2) 0.01721(2.86E-2) 0.24170(1.90E-2) 0.01128(8.77E-2) 0.24420(4.62E-2) 0.02762(5.74E-2) 0.25693(2.37E-3)
b 0.01082(2.09E-2) 0.07648(1.65E-2) 0.05082(4.73E-2) 0.20491(1.45E-2) 0.01792(1.53E-1) 0.21623(2.35E-2) 0.03716(6.28E-2) 0.21200(6.66E-3)

8
c 0.00213(1.71E-2) 0.01484(2.21E-3) 0.01625(1.79E-1) 0.26152(1.52E-2) 0.06821(2.78E-1) 0.42766(9.56E-3) 0.06538(8.62E-2) 0.72358(1.07E-2)
b 0.01012(1.03E-1) 0.05534(1.12E-2) 0.04184(1.10E-1) 0.12504(1.05E-2) 0.08697(1.63E-1) 0.15739(1.32E-2) 0.12708(1.86E-1) 0.21640(1.69E-2)

10
c 0.12690(2.71E-1) 0.17885(1.10E-3) 0.10871(1.62E-1) 0.73855(8.54E-2) 0.21682(5.71E-1) 0.73645(2.81E-2) 0.19273(2.63E-1) 0.86756(1.07E-1)
b 0.15428(1.77E-1) 0.26343(5.05E-3) 0.11829(2.08E-1) 0.25957(2.88E-2) 0.16287(2.55E-1) 0.33443(6.99E-2) 0.10175(3.28E-1) 0.20545(4.21E-2)

m ROI I-NSGA-III-PLVF NSGA-III I-NSGA-III-PLVF NSGA-III I-NSGA-III-PLVF NSGA-III I-NSGA-III-PLVF NSGA-III

3
c 0.00027(7.10E-4) 0.10382(3.56E-3) 0.00033(4.12E-4) 0.13951(5.20E-2) 0.00273(2.32E-4) 0.14149(2.58E-2) 0.00518(2.19E-4) 0.13346(8.21E-2)
b 0.00077(3.10E-4) 0.02822(2.42E-3) 0.00067(1.68E-4) 0.03979(2.18E-3) 0.00077(9.23E-5) 0.04594(1.02E-2) 0.00748(6.69E-5) 0.03752(4.26E-3)

5
c 0.03127(4.12E-2) 0.21898(4.83E-3) 0.00536(2.76E-2) 0.24637(2.83E-2) 0.03192(2.48E-2) 0.27167(3.13E-2) 0.01721(2.05E-2) 0.26652(1.93E-2)
b 0.06781(3.21E-2) 0.20088(2.18E-2) 0.00142(1.79E-2) 0.21689(3.86E-2) 0.07622(1.47E-2) 0.20411(1.84E-2) 0.03721(8.56E-3) 0.21169(1.13E-2)

8
c 0.08332(4.29E-2) 0.17453(5.29E-2) 0.06562(3.11E-2) 0.30752(1.27E-1) 0.07570(4.34E-2) 0.21631(1.74E-1) 0.08773(2.88E-3) 0.20743(9.74E-2)
b 0.07793(1.02E-1) 0.18973(2.62E-2) 0.05571(1.53E-2) 0.21554(1.82E-2) 0.12148(7.82E-2) 0.22883(3.18E-2) 0.07242(7.62E-2) 0.28123(2.49E-2)

10
c 0.11731(2.11E-1) 0.22708(1.29E-2) 0.07922(3.03E-1) 0.87988(1.02E-2) 0.18728(3.77E-1) 0.88635(4.28E-3) 0.13752(3.20E-1) 0.87598(1.82E-2)
b 0.12712(1.71E-1) 0.16275(3.28E-2) 0.11082(1.88E-1) 0.23098(1.28E-3) 0.21781(2.38E-1) 0.24970(2.91E-2) 0.11683(2.02E-1) 0.22976(2.29E-2)

The ROI column gives the type of the DM supplied utopia weights. c indicates the preference on the middle region of the PF while b indicates the
preference on an extreme. All better results are with statistical significance according to Wilcoxon signed-rank test with a 95% confidence level,
and are highlighted in bold face with a gray background.

From the results shown in Table 3, we observe the overwhelming superiority of I-MOEA/D-PLVF
and I-NSGA-III-PLVF, over the baseline MOEA/D and NSGA-III, for approximating the DM pre-
ferred solution. In particular, they obtain statistically significantly better metric values (i.e., smaller
approximation error) on all test problems. In the following paragraphs, we discuss the results from
three aspects.
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• Fig. 5 to Fig. 12 plot the populations (with respect to the best approximation error) obtained
by different algorithms. Note that since the observations on DTLZ3 and DTLZ4 test problems
are similar to those on DTLZ2 test problem, we only show the plots on DTLZ1 and DTLZ2 test
problems in this paper while the complete results are put in Section III of the supplementary
document. From these plots, we can observe that both I-MOEA/D-PLVF and I-NSGA-III-PLVF
are always able to find solutions that well approximate the unknown DM’s golden point in a
decent accuracy as shown in Table 3. In contrast, since the baseline MOEA/D and NSGA-III
are designed to approximate the whole PF, it is not surprised to see that most of their solutions
are away from the DM’s golden point. Although some of the solutions obtained by the baseline
MOEA/D and NSGA-III can by chance pass the ROI, i.e., the vicinity of the DM’s golden point,
they still have a observable distance from the DM’s golden point. Moreover, the other solutions
away from the ROI will unarguably result in the cognitive noise to posteriori decision-making
procedure, especially for problems that have many objectives.
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Figure 5: Solutions obtained on 3-objective DTLZ1 and DTLZ2 test problems where zr, which prefers
the middle region of the PF, is represented as the red asterisk.
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Figure 6: Solutions obtained on 3-objective DTLZ1 and DTLZ2 test problems where zr, which prefers
one side of the PF, is represented as the red asterisk.

• From the results shown in Table 3, we find that it seems to be more difficult for the baseline
MOEA/D and NSGA-III to find the DM’s preferred solution on the middle region of the PF than
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Figure 7: Solutions obtained on 5-objective DTLZ1 and DTLZ2 test problems where zr, which prefers
the middle region of the PF, is represented as the red dotted line.
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Figure 8: Solutions obtained on 5-objective DTLZ1 and DTLZ2 test problems where zr, which prefers
one side of the PF, is represented as the red dotted line.
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Figure 9: Solutions obtained on 8-objective DTLZ1 and DTLZ2 test problems where zr, which prefers
the middle region of the PF, is represented as the red dotted line.
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Figure 10: Solutions obtained on 8-objective DTLZ1 and DTLZ2 test problems where zr, which prefers
one side of the PF, is represented as the red dotted line.
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Figure 11: Solutions obtained on 10-objective DTLZ1 and DTLZ2 test problems where zr, which
prefers the middle region of the PF, is represented as the red dotted line.
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Figure 12: Solutions obtained on 10-objective DTLZ1 and DTLZ2 test problems where zr, which
prefers one side of the PF, is represented as the red dotted line.

15



those biased toward a particular extreme of the PF. This is because if the ROI is on one side of
the PF, it is more or less close to the boundary. The baseline MOEA/D and NSGA-III, which
were originally designed to approximate the whole PF, can always find solutions on the boundary,
whereas it becomes increasingly difficult to find solutions on the middle region of the PF with
the increase of the number of objectives. Therefore, the approximation error to a DM’s golden
point on one side of the PF seems to be better than those on the middle region of the PF. In
contrast, since our proposed interactive framework can progressively learn the DM’s preference
information and adjust the search direction, I-MOEA/D-PLVF and I-NSGA-III-PLVF can well
approximate the ROI in any part of the PF.

• Furthermore, we find that the performance of I-MOEA/D-PLVF and I-NSGA-III-PLVF do not
depend on the shape of the PF (in particular DTLZ1 test problem has a linear PF while DTLZ2
to DTLZ4 test problems have a concave PF). But the performance of the proposed interactive
framework can be influenced by the difficulty of the search space. In particular, if the search
space contains many local PFs, like DTLZ1 and DTLZ3, the evolving population may need a
long time to jump over these local PFs. Even worse, some region of the PF will be more difficult
to approximate than the others. If this region happens to be the ROI, the DM will wrongly assign
a higher score to the solutions outside the ROI. In Fig. 13 and Fig. 14, we plot the variations
of the approximation error versus the number of generations on the 3-objective case while more
comprehensive results can be found in Section IV of the supplementary document. From these
plots, we can see that the approximation error on the relatively simple DTLZ2 test problem
quickly drops down at the early stage of the evolution. But for problems with many local PFs,
i.e., DTLZ1 and DTLZ3 test problems, the trajectories of approximation error struggle longer
time before dropping down. Although DTLZ4 test problem does not have local PFs, its search
space has strong bias toward certain objective coordinates. Accordingly, we observe the the
fluctuation of the trajectories over generations. This might be caused by the biased evolving
population which mislead the DM in decision-making.
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Figure 13: Trajectories of the approximation error versus the number of generations on 3-objective
DTLZ1 to DTLZ4 test problems. The DM’s ‘golden’ point prefers the middle region of the PF.
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Figure 14: Trajectories of the approximation error versus the number of generations on 3-objective
DTLZ1 to DTLZ4 test problems. The DM’s ‘golden’ point prefers one side of the PF.
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5.2 Parametric Studies

As introduced in Section 4, besides the intrinsic parameters associated with an EMO algorithm, e.g.,
population size, crossover and mutation probabilities, in our proposed interactive framework, there are
some additional parameters that may affect the performance for approximating the ROI. They are:
the number of incumbent candidates presented to the DM for scoring (µ), the number of generations
between two consecutive consultation sessions (τ), and the step size of the reference point update (η).
In this subsection, we study the effects of these parameters, while keeping the other parameters of
I-MOEA/D-PLVF and I-NSGA-III-PLVF the same as introduced in Section 4. In particular, we use
DTLZ1 and DTLZ2 as the test problems, given the observations on DTLZ3 and DTLZ4 test problems
can be generalised from those in DTLZ2. Each algorithm is run 21 times with different random seeds.

5.2.1 Effect of µ

As introduced in Section 3.1, µ determines the number of labeled data (scored by the DM) that can be
used to train the AVF model. It makes sense that the more data you can provide, the more accurate
AVF model you can expect. However, presenting the DM too many alternatives for scoring will
definitely increase her/his workload, thus lead to the fatigue. On the other hand, the model accuracy
will be impaired if the data is not sufficient. To study the effect of µ, we consider three different
settings, i.e., µ ∈ {5, 10, 20}. Furthermore, to validate the importance of an accurate AVF model
for helping the interactive framework, we also investigate an “utopia” scenario where I-MOEA/D-
PLVF and I-NSGA-III-PLVF directly use the DM’s golden value function in the preference elicitation
module. In Fig. 15, we show the variations of the median approximation error with respect to different
µ settings and the utopia scenario. Note that we only show the three-objective case since the other
observations are similar (more comprehensive results can be found in Section V of the supplementary
document). As expected, I-MOEA/D-PLVF and I-NSGA-III-PLVF always perform best when directly
using the DM’s golden value function. This observation supports the importance of an accurate model.
Moreover, I-MOEA/D-PLVF and I-NSGA-III-PLVF can have a better performance when using a large
µ.
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Figure 15: Variations of the approximation errors with different µ settings. (c) indicates the preference
on the middle region of the PF, while (b) indicates the preference on an extreme.

5.2.2 Effect of τ

Here we study the effect of τ by considering three different settings, i.e, τ ∈ {10, 25, 50}. In Fig. 16, we
plot the variations of the median approximation error with respect to different τ settings in the three-
objective scenario while more comprehensive results can be found in Section V of the supplementary
document. Specifically, a small τ means that we need to frequently ask the DM for scoring the can-
didate solutions and then update the AVF model accordingly. To a certain extent, this operation can
improve the model accuracy for approximating the DM’s preference information. However, similar to
the overfitting phenomenon in machine learning, too frequent DM calls also have the risk of premature
convergence on some local optima. As shown in Fig. 16, the performance of I-MOEA/D-PLVF and
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I-NSGA-III-PLVF is not promising when setting τ = 10 on DTLZ1 test problem which has more than
114 local PFs. On the other hand, if the DM is rarely been consulted by using a large τ , the consul-
tation module can hardly get enough information from the DM. Thus, we can hardly expect that the
AVF model can provide useful information that truly represent the DM’s preference information to
the optimisation module. As expected, the performance of I-MOEA/D-PLVF and I-NSGA-III-PLVF
is always not satisfactory when setting τ = 50.
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Figure 16: Variations of the approximation errors with different τ settings. (c) indicates the preference
on the middle region of the PF, while (b) indicates the preference on an extreme.

5.2.3 Effect of η

As introduced in Section 3.2, η controls the convergence rate of the reference points toward the
promising ones identified by the AVF model learned from the consultation module. A large η will lead
to a fast convergence, thus it may have a risk of pre-mature convergence toward an undesired region.
On the contrary, a small η may slow down the convergence toward the ROI within the limited number
of FEs. To study the effect of µ, we consider different µ settings as η ∈ {0.1, 0.3, 0.5, 0.7, 0.9}. From
the results shown in Fig. 17 and more comprehensive results shown in Section V of the supplementary
document, we find that the best setting of η is problem dependent. But neither too large nor too
small η can offer a satisfactory result.
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Figure 17: Variations of the approximation errors with different η settings. (c) indicates the preference
on the middle region of the PF, while (b) indicates the preference on an extreme.

5.3 Random Error in DM’s Preference Information

In the previous experiments, the DM’s preference information is modelled as a deterministic value
function. However, as a human being, the DM can show certain level of inconsistencies when providing
her/his preference information in practice. To study the effect brought by the inconsistencies in the
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preference elicitation, we consider adding some stochastic noises to the DM’s golden value function.
Specifically, the stochastic DM’s golden value function is defined as:

ψ(x) = ψ(x)× noise(1, δ2t ) (8)

where ψ(x) is calculated according to equation (6). noise(∗, ∗) is a Gaussian noise, δt = κ× (1− T
Tmax

),
κ determines the strength of the noise level. T is the current generation counter and Tmax is the pre-
defined maximum number of generations. In this case, we can expect that the DM’s inconsistencies
decrease with the evolution. This setting tries to simulate a realistic DM who is likely to make errors at
the beginning due to her/his lack of knowledge of the problem. With the progress of evolution, the DM
becomes more consistent in preference elicitation and decision-making. To study the influence of DM’s
inconsistencies on the performance of our proposed interactive framework, we set κ ∈ {0.0, 0.1, 0.5}
separately. In particular, it becomes the deterministic value function if κ = 0.0. Here we choose
DTLZ1 and DTLZ2 as the test problems, and keep the parameters of I-MOEA/D-PLVF and I-NSGA-
III-PLVF the same as introduced in Section 4. Fig. 18 shows the variations of the approximation
error with respect to different κ settings (more comprehensive results are shown in Section VI of the
supplementary document). As expected the performance of I-MOEA/D-PLVF and I-NSGA-III-PLVF
degenerates with the increase of κ.
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Figure 18: Variations of the approximation errors with different κ settings. (c) indicates the preference
on the middle region of the PF, while (b) indicates the preference on an extreme.

6 Conclusions and Future Directions

This paper has proposed a simple yet elegant interactive framework which can be embedded in any
decomposition-based EMO algorithm so that the ultimate goal is not a complete PF, but a preferred
solution of the DM’s choice. This interactive framework consists of three modules, i.e, consultation,
preference elicitation and optimisation. Specifically, the consultation module aims to progressively
learn an AVF to model the DM’s preference information. In particular, during the consultation session,
the DM is presented with a few incumbent candidates for scoring according her/his preference. Once
the AVF is learned, the preference elicitation module translates it into the form that can be used in
a decomposition-based EMO algorithm, i.e., a set of reference points that are biased toward the ROI.
Extensive experiments on three to ten-objective test problems fully demonstrate the effectiveness of
our proposed interactive framework for helping two widely used decomposition-based EMO algorithms,
i.e., MOEA/D and NSGA-III, for finding the DM’s preferred solution.

The proposed interactive framework can be extended in a number of different ways.

• First, this paper assume that the DM’s preference information is represented as a monotonic
value function. However, in practice, it is not uncommon that the DM judges some of the
alternatives to be incomparable. How to discriminate the order information from incomparable
comparisons? Moreover, instead of assigning a scalar score to a solution, it is interesting to
study how to derive the preference information through holistic comparisons among incumbent
solutions.
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• This paper only considers the unconstrained MOPs, in which any preference information elicited
by the DM is feasible. In the presence of constraints or the PF by itself is discontinuous,
some region of the attainable objective space is infeasible but is also unknown to the DM. It is
interesting to study how to handle the infeasible information and to inform the DM to modify
her/his preference information in due course.

• Although this paper has restricted the value function to be of certain form (6), other more value
function structures can also be considered. Furthermore, it is interesting to further investigate
the robustness consideration in deriving the AVF. More studies are required to investigate the
side effects brought by the inconsistencies in decision-making and the ways to mitigate that.

• In this paper, the termination criterion is the same as the standard EMO algorithm, i.e., the
fixed number of FEs. However, as shown in the plots of the trajectories of the approximation
errors, we can see that algorithms can be terminated earlier before the pre-defined number of
FEs. It is interesting to investigate some optimal stopping criterion that is able to automatically
terminates an algorithm when it is necessary.

As discussed in [67], it seems to be an inspiring direction for future research of MO to combine
the ideas from the EMO algorithms and MCDM. More efforts are required to develop pragmatic
algorithms for MO and decision-making.
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