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Abstract: Most existing studies on evolutionary multi-objective optimisation focus on approx-
imating the whole Pareto-optimal front. Nevertheless, rather than the whole front, which demands
for too many points (especially in a high-dimensional space), the decision maker might only interest
in a partial region, called the region of interest. In this case, solutions outside this region can be noisy
to the decision making procedure. Even worse, there is no guarantee that we can find the preferred
solutions when tackling problems with complicated properties or a large number of objectives. In this
paper, we develop a systematic way to incorporate the decision maker?s preference information into
the decomposition-based evolutionary multi-objective optimisation methods. Generally speaking, our
basic idea is a non-uniform mapping scheme by which the originally uniformly distributed reference
points on a canonical simplex can be mapped to the new positions close to the aspiration level vector
specified by the decision maker. By these means, we are able to steer the search process towards
the region of interest either directly or in an interactive manner and also handle a large number of
objectives. In the meanwhile, the boundary solutions can be approximated given the decision maker?s
requirements. Furthermore, the extent of the region of the interest is intuitively understandable and
controllable in a closed form. Extensive experiments, both proof-of-principle and on a variety of
problems with 3 to 10 objectives, fully demonstrate the effectiveness of our proposed method for
approximating the preferred solutions in the region of interest.

Keywords: Evolutionary multi-objective optimisation, decomposition-based method, user-
preference incorporation, reference points.

1 Introduction

Many real-life applications usually consider optimising multiple conflicting objectives simultaneously.
To handle such problems, termed as multi-objective optimisation problems (MOPs), decision makers
(DMs) often look for a set of Pareto-optimal solutions none of which can be considered better than
another when all objectives are of importance. Evolutionary multi-objective optimisation (EMO)
algorithms, which work with a population of solutions and can approximate a set of trade-off alter-
natives simultaneously, have been widely accepted as a major tool for solving MOPs. Over the past
two decades and beyond, many efforts have been devoted to developing EMO algorithms (e.g. elitist
non-dominated sorting genetic algorithm (NSGA-II) [1] and its variants [2–4], indicator-based EA
(IBEA) [5] and multi-objective EA based on decomposition (MOEA/D) [6]) to find a set of efficient
solutions that well approximate the whole Pareto-optimal front (PF) in terms of convergence and
diversity.

The ultimate goal of multi-objective optimisation is to help the DM find solutions that meet at
most his/her preferences. Supplying a DM with a large amount of trade-off points, which approxi-
mate the whole PF, not only increases his/her workload, but also provides many irrelevant or even

∗This article is accepted for publication in IEEE Transactions on Cybernetics. Copy right is transferred to IEEE
while this is a manuscript version.

1



noisy information to the decision-making procedure. Moreover, due to the curse of dimensionality, ap-
proximating a high-dimensional PF as a whole not only becomes computationally inefficient (or even
infeasible), but also causes a severe cognitive obstacle for the DM to comprehend the high-dimensional
data. To facilitate the decision-making procedure, it is more practical to incorporate the DM’s pref-
erence information into the search process. This allows the computational efforts to concentrate on
the region of interest (ROI) and thus has a better approximation therein. In general, the preference
information can be incorporated a priori, posteriori or interactively. Note that the traditional EMO
goes along the posteriori way of which the disadvantages have been discussed before. If the preference
information is elicited a priori, it is directly used to guide the solutions toward the ROI. However, it is
non-trivial to faithfully model the preference information before solving the MOP at hand. Eliciting
the preference information in an interactive manner has been studied in the multi-criterion decision-
making (MCDM) field for over half a century. It enables the DM to progressively learn and understand
the characteristics of the MOP at hand and adjust his/her elicited preference information. Conse-
quently, solutions are effectively driven toward the ROI. However, since the optimisation process is
full of uncertainty and the DM is almost unavoidable to show inconsistencies in decision-making [7],
it is difficult to model the DM’s behaviour in an appropriate manner.

Integrating and blending the EMO and MCDM together to tailor the DM’s preference information
has been studied since 90’s [8–11]. Although the existing works aim at steering the search process
toward the ROI, the definition of the ROI is still vague. First of all, the ROI can be any part of the PF
near the DM supplied aspiration level vector or even subjectively determined by the DM. Secondly,
the ROI is expected to be a partial region of the PF whereas no quantitative definition has been
given to the size of this region. Although some studies (e.g. [12–14]) claimed to control the spread
of the preferred solutions accommodating to the DM’s expectation of the extent of the ROI, i.e. the
ROI’s size, the corresponding parameter setting is ad-hoc [11]. In addition to the ROI, the boundary
of the PF is also important for the DM to understand the underlying problem and to facilitate the
further decision-making procedure. In particular, the boundary provides the DM general information
about the PF’s geometrical characteristics; and more importantly, it provides the information of the
ideal and nadir points which facilitate the normalisation of the disparately scaled objective functions.
Unfortunately, how to keep solutions located in the ROI and the boundary simultaneously has rarely
been studied [15].

During recent years, especially after the developments of MOEA/D and NSGA-III [16], the
decomposition-based EMO methods have become increasingly popular for the posteriori multi-objective
optimisation. Generally speaking, by specifying a set of reference points1, the decomposition-based
EMO methods at first decompose the MOP at hand into multiple subproblems, either with scalar
objective or simplified multi-objective. Then, a population-based technique is applied to solve these
subproblems in a collaborative manner. Under some mild conditions, the optimal solutions of all
subproblems constitute a good approximation to the PF. It is not difficult to understand that the
distribution of the reference points is essential in a decomposition-based EMO method. It not only
implies a priori prediction of the PF’s geometrical characteristics, but also determines the distribution
of Pareto-optimal solutions. [17] and [18] suggested some structured methods to generate evenly dis-
tributed reference points on a canonical simplex. To adapt to the irregular PFs, such as disconnected
or mixed shapes and disparately scaled objectives, some adaptive reference point adjustment methods
(e.g. [19] and [20]) have been developed to adjust the distribution of reference points on the fly. To
integrate the DM’s preference information into the decomposition-based EMO methods, a natural
idea is to make the distribution of the reference points be biased toward the ROI. Although it sounds
intuitive, in practice, how to obtain the appropriate reference points that accommodate to the DM’s
preference information is far from trivial. Most recently, there have been some initiatives on adjusting
the distribution of the reference points according to the DM’s preference information (e.g. [21–23]).
However, they are ad-hoc and the position and extent of the reference points around the ROI are not
fully controllable.

In this paper, we present a systematic way to incorporate the DM’s preference information, either a

1In this paper, we use the term reference point without loss of generality, although some other literatures, e.g. the
original MOEA/D [6], also use the term weight vector interchangeably.
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priori or interactively, into the decomposition-based EMO methods. In particular, the DM’s preference
information is modelled as an aspiration level vector, which has been widely used in the EMO litera-
ture [11]. Comparing to three state-of-the-art preference-based EMO algorithms, the effectiveness and
competitiveness of the proposed preference incorporation method for assisting three state-of-the-art
decomposition-based EMO algorithms to approximate ROIs have been validated through extensive
experiments on 56 test problems with 2 to 10 objectives, under both attainable and unattainable
aspiration level vector settings. Our major contributions are outlined as follows.

• Our basic idea is a non-uniform mapping scheme by which the originally evenly distributed
reference points on a canonical simplex can be mapped to new positions close to the DM specified
aspiration level vector and thereby having a biased distribution.

• The mapping function is nonlinear in nature and is a function of a reference point’s position
with respect to the pivot point. Accordingly, the distribution of the reference points after the
non-uniform mapping is biased toward the pivot point. In particular, this pivot point is the
representative of the ROI on the simplex and determines the ROI’s position.

• Different from the existing preference-based EMO algorithms, where the extent of the approxi-
mated ROI is controlled in an ad-hoc manner, this paper provides an intuitively understandable
manner to quantify this extent in a closed form. It is the ratio of the biased reference points
proportional to the simplex. To a certain extent, this quantity can be used as the ratio of the
ROI’s size with respect to the PF.

• Given the DM’s requirements, the proposed non-uniform mapping scheme is able to not only
obtain a set of biased reference points toward the ROI, but also preserve the ones located on the
boundary. This latter characteristic enables a decomposition-based EMO method not only find
the preferred solutions, but also provide the global information about the PF to the DM.

The rest of this paper is organised as follows. Section 2 devotes to overviewing some state-of-
the-art related to this paper. Section 3 presents the technical details of our proposed non-uniform
mapping scheme. Section 4 and Section 5 show the empirical studies on several benchmark problems.
Finally, Section 6 provides some concluding remarks along with some future directions.

2 Related Works

In the past two decades, various methods have been developed to incorporate the DM’s preference
information into the EMO. This section briefly overviews the existing literature according to the
ways of eliciting the DM’s preference information along with the mechanisms adopted to guide the
population toward the ROI. The interested reader is referred to [8–11] for the more comprehensive
survey.

The first one employs the weight information, i.e. relative importance, to model the DM’s pref-
erence information. For example, Deb et al. [24] developed a modified fitness sharing mechanism,
by using a weighted Euclidean distance, to bias the population distribution. Branke and Deb [25]
developed a weighted mapping method to modify the crowding distance calculation of NSGA-II by
which the search process can be guided toward the ROI. Note that the weight-based methods become
ineffective when facing a large number of objectives. Because it is difficult to either specify the weights
or verify the quality of the biased approximation. Moreover, it is unintuitive and challenging for the
DM to steer the search process toward the ROI via the weighting scheme.

The second sort elicits the preference information by inviting the DM to make pairwise comparisons
among a sample of solutions from a population. As the pioneer, Phelps and Köksalan [26] proposed
to use a value function model to represent the DM’s preference information. Note that the precise
form of the value function model is unknown a priori. It is progressively learned through a periodic
interaction with the DM during the optimization process. In particular, the DM is asked to express
his/her preference information about some selected alternatives, e.g. their rankings, at each interaction
session. Inspired by [26], many variants have been developed by using various value function models,
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e.g. quasi-concave preference function [27], polynomial value function [28], support vector machine [29]
and ordinal regression [30]. In [31], Gong et al. proposed to use a preference polyhedron to approximate
the DM’s value function by choosing the best and worst solutions from the current non-dominated
solutions. In [32], Parmee and Cvetkovic suggested a method to integrate the DM’s fuzzy preference
information into the EMO algorithm by converting the linguistic terms into weights. This sort of
methods are interesting but complicated, especially when the number of objectives becomes large.
In addition, using such an approach interactively increases the DM’s cognitive load and it is hard
to control the extent of the ROI. In [15], the biased distribution of solutions is achieved by setting
different territory sizes in the territory-based evolutionary algorithm [33]. In particular, a smaller
territory leads to a higher resolution of solutions, and vice versa. The size of the corresponding
territory is progressively adjusted by the interaction with the DM. Note that this work is one of the
few that acknowledged the importance of providing information on the extent of the solution space
while converging the ROI. The major drawback of this method comes from its diversity management,
especially in a high-dimensional space. Due to the same reason, it might be difficult to control the
extent of the ROI precisely.

The third category transforms the DM’s preference information into some modified trade-off re-
lationship to compare solutions [34]. In [35], Greenwood et al. suggested an imprecisely specified
multi-attribute utility theory-based weighted sum method to obtain the ranking of objectives from
some candidate solutions.

The fourth category [36] invites the DM to express his/her preference information by supplying
two thresholds: an absolutely satisfying objective value and a marginally infeasible objective value.
Afterwards, each objective function of the original MOP is converted into a desirability function by
using these thresholds as parameters. Then, an EMO algorithm is applied to optimise the desirability
functions instead of the original objective functions.

The fifth class [37,38] uses outranking concept [39] to incorporate the DM’s preference information.
Specifically, by specifying some necessary parameters, a DM develops a fuzzy predicate that models
the truth degree of the predicate “solution x is at least as good as solution y”.

The last one uses aspiration level vectors to represent the DM’s desired values/levels for each
objective he/she would like to achieve. As the first attempt, Fonseca and Fleming [40] suggested to
model the DM’s preference as a goal, i.e. the aspiration level vector, to achieve. In [12, 41] and [42],
Deb et al. combined the reference point, i.e. aspiration level vector, related methods with NSGA-II to
guide the search process toward the ROI. In particular, solutions close to the given reference point have
a high priority to survive to the next generation. In [43] and [44], the aspiration level vector is used to
help select the leader swarm in the multi-objective particle swarm optimisation algorithm. Molina et
al. [45] suggested a modified dominance relationship, called g-dominance, where solutions satisfying
either all or none aspiration levels are preferred over those satisfying some aspiration levels. Said et
al. [13] developed another modified dominance relationship, called r-dominance, where non-dominated
solutions, according to the Pareto dominance relationship, can be distinguished by their weighted
Euclidean distances toward the DM supplied aspiration level vector. Recently, some decomposition-
based methods also used the aspiration level vector to incorporate the DM’s preference information
into the search process, e.g. [23] and [46–48]. Their basic idea is to use the aspiration level vector as
the anchor around which they try to obtain some reference points. Although, by specifying aspiration
level vectors, a DM is able to guide the search toward the ROI directly or interactively even when
encountering a large number of objectives, existing methods cannot approximate the solutions in the
ROI and the boundary simultaneously. In addition, the control of the extent of the ROI is ad-hoc.
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3 Non-Uniform Mapping Scheme

3.1 Overview

Reference points, as the basic components in the decomposition-based EMO algorithms, are usually
generated in a structured manner, e.g. the Das and Dennis’s method2 [17]. Fig. 1(a) shows an
example of 91 evenly distributed reference points in a three-dimensional space. In this case, the DM
has no preference on any particular region of the PF. These reference points are used to guide a
decomposition-based EMO algorithm search for the whole PF. On the other hand, if the DM has
elicited some preference information, e.g. an aspiration level vector, it is preferable that reference
points can have a biased distribution toward the ROI accordingly. Bearing this consideration in mind,
this section presents a non-uniform mapping scheme (NUMS) by which we are able to change the
originally evenly distributed reference points to be biased toward the ROI. Fig. 1(b) and Fig. 1(c)
show two examples of the biased reference points distribution after the non-uniform mapping. In the
following paragraphs, we will describe the mathematical model of the NUMS in detail before showing
its algorithmic implementations.
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(c) Biased distribution without bound-
ary.

Figure 1: Reference points used in decomposition-based EMO methods.

3.2 NUMS in One-Dimensional Space

b1 wp b2ww′

δ

`

∆

Figure 2: Non-uniform mapping scheme in 1-D scenario.

Let us start with a one-dimensional case. Considering the illustrative example shown in Fig. 2,
the reference points generated in a structured manner are evenly distributed along the line starting
from b1 and ending at b2. Let us assume that the position of an evenly distributed reference point w
obeys a uniform distribution whose probability density function (PDF) is defined as follows:

ψu(ζ) =
1

∆
(1)

2In [17], N =
(
H+m−1
m−1

)
reference points, with a uniform spacing δ = 1

H
, are sampled from a canonical simplex Ψm,

where H > 0 is the number of divisions considered along each objective coordinate, and m is the number of objectives.
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where 0 ≤ ζ ≤ ∆, ∆ = |b2 − wp| is the distance between wp and b2. Here wp is defined as the
pivot point, which is the intersecting point between the reference line, connecting the DM supplied
aspiration level vector zr and the origin, and the simplex Ψm, to represent the ROI. When considering
the DM’s preference information, instead of a uniform distribution, it is preferable that the reference
points have a biased distribution toward wp, i.e. the closer to wp, the more reference points. The
purpose of the NUMS is to shift w, originally generated by a structured manner, onto a new position
w′ close to wp. Let us assume that the position of w′ obeys a non-uniform distribution whose PDF is
defined as follows:

ψe(ξ) = kξη (2)

where ξ = δ
∆ , δ = |b2 − w′| is the distance between w′ and b2. δ determines the position of w′. η is a

control parameter which will be further discussed in Section 3.4. Note that 0 ≤ ξ ≤ 1 and δ gives the
exact position of w′ along the line starting from b1 and ending at b2. By equating the area under the
probability curve of ψe(ξ) with that of ψu(ζ), we have:∫ δ

∆

0
kxηdx =

∫ ∆−`

0

1

∆
dx =

∆− `
∆

(3)

where ` = |w−wp| is the distance between w and wp. By letting ` = 0 and δ = ∆ in equation (3), we
have: ∫ 1

0
kxηdx = 1 (4)

this gives us k = η + 1. Finally, by substituting η + 1 for k in equation (3), we have:

δ = ∆(
∆− `

∆
)

1
η+1 (5)

3.3 NUMS in m-Dimensional Space
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Figure 3: Non-uniform mapping scheme in 2-D scenario.

Now, we generalise the one-dimensional non-uniform mapping model into a m-dimensional case.
Without loss of generality, let us consider a two-dimensional example shown in Fig. 2 for illustration.
Similar to the one-dimensional case, the purpose of the NUMS in a m-dimensional case is to shift
an evenly distributed reference point w onto w′ along the direction wp − w. For the ease of latter
computation, we consider in an opposite direction. That is to say the NUMS shifts wp onto w′ along
the direction w −wp. Accordingly, w′ is calculated as:

w′ = wp + ρ× w −wp

‖w −wp‖ (6)
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where ‖ · ‖ represents `2-norm and ρ is calculated as:

ρ = ∆− δ (7)

where ∆ = ‖b−wp‖ and δ is calculated based on equation (5) in which ` = ‖w −wp‖. Note that w
and wp are known a priori, while b is one of the intersecting points between the line connecting wp

and w and the edges of the simplex Ψm. Generally speaking, b can be calculated as:

b = wp + ∆× w −wp

‖w −wp‖ (8)

Geometrically, there are at most m such intersecting points, each of which should have a zero element.
In this case, for each bi, i ∈ {1, · · · ,m}, the corresponding ∆ in equation (8) can be calculated as:

∆ = min
1≤i≤m

[wpi ×
‖wp −w‖
wpi − wi

]+ (9)

where [σ]+ returns σ if and only if σ > 0, otherwise it returns an invalid number.

3.4 Effects and Setting of η

Fig. 4 shows six function curves with various η settings. From this figure, we can infer that η controls
the gradient of the PDF curve. ψe(ξ) is a decreasing function of ξ when η > 0; while it is an increasing
function of ξ when η < 0. From Fig. 4, we also find that the function curve is more skewed with a
larger η. According to the properties of power function, it is not difficult to understand that, for a
given ∆ and ` in equation (5), a larger η will results in a larger δ. In summary, η has the following
two effects on the NUMS:

• To push w toward wp, we need to set η > 0; otherwise w will be shifted away from wp.

• With a large η, which results in a large δ, w′ has a large probability to be closer to wp after the
non-uniform mapping; on the flip side, w′ will be closer to b.
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⌘ = 5.0
⌘ = 10.0

Figure 4: The shape of ψe(ξ) with different η.

Based on the above discussions, we realise that η is able to control the extent of the biased
reference points after the non-uniform mapping. However, due to the non-linear property of the
PDF in equation (2), it is far from trivial to choose the appropriate η beforehand that results in the
expected extent of the ROI. Instead of tweaking η, by trial-and-error, with respect to the non-linear
mapping function, here we introduce an intuitively understandable way to control the extent of the
ROI. Specifically, rather than a concrete extent of the ROI, it is more plausible for the DM to specify
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a relative quantity in practice. Here we use τ (0 < τ ≤ 1), the ratio of the surface area of the biased
reference points proportional to the simplex Ψm, as this quantity. As discussed in [6], under certain
smoothness assumption, each reference point is supposed to correspond to a Pareto-optimal solution.
Therefore, τ can also be regarded as an relative ratio of the ROI’s size with respect to the PF. Given
τ , collected as an additional preference information elicited by the DM, Theorem 1 gives a closed form
for setting the corresponding η value.

Theorem 1. Given the relative extent τ (0 < τ ≤ 1) of reference points after the non-uniform
mapping, comparing to the simplex Ψm, the η value in equation (2) is calculated as

η =
logα

log β
− 1 (10)

where α = m
H and β = 1− τ .

The proof of Theorem 1 can be found in Appendix A of the supplementary document3. Fig. 5 shows
three examples of biased reference points after the non-uniform mapping with different τ settings.
Based on Theorem 1, we have the following corollary which provides the upper and lower bounds for
setting τ .

Corollary 1. To make the extent of the biased reference points shrink, we need to set 0 < τ < 1− m
H .

The proof of Corollary 1 can be found in Appendix B of the supplementary document. In principle,
comparing to the whole PF, the relative extent of the ROI can be any number between 0 and 1.
However, Corollary 1 provides a restriction on τ in order to make the evenly distributed reference
points shrink to the ROI; otherwise they will expand toward the boundary. It is worth noting that
Theorem 1 and Corollary 1 are derived under the condition H > m. Otherwise, all reference points
generated by the Das and Dennis’s method should lie on the boundary of the simplex Ψm. How to
shift the reference points lying on the boundary will be described in the next subsection.
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(a) τ = 0.1 and η = 12.1576.
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(b) τ = 0.3 and η = 2.8867.

0

0.5

1

0

0.5

1

0

0.5

1

f1f2

f 3

(c) τ = 0.5 and η = 1.0.

Figure 5: Distribution of reference points for different settings of τ and their corresponding η when
zr = (0.7, 0.8, 0.5)T .

3.5 Boundary Preservation

Note that the NUMS described so far shifts the reference points, except those lying on the boundary
of the simplex Ψm, onto the ROI. The biased reference points try to guide a decomposition-based
EMO algorithm not only search for the preferred solutions, but also approximate those lying on the
PF’s boundary. In particular, the boundary solutions provide the DM more comprehension of the
PF, e.g. the PF’s general shape, the ideal and nadir points which can be useful for further decision-
making. Nevertheless, if the DM is not interested in the boundary any longer, we can make a simple
modification on the NUMS to shift the reference points lying on the boundary toward the ROI as

3The supplementary document can be found in https://coda-group.github.io/supp.pdf
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well. Specifically, a reference point wb is considered lying on the boundary of Ψm if and only if the
following condition is met:

∆− ‖wb −wp‖ < ε (11)

where ε = 10−6 is a small quantity and ∆ is determined according to equation (9). To shift wb onto
the ROI, its new position after the NUMS is calculated as:

w′ = wp + ρ× wb −wp

‖wb −wp‖ (12)

where ρ = τ × ‖wb − wp‖. Note that the η value derived in Theorem 1 is under the consideration
that the DM is willing to keep the boundary points. If the reference points lying on the boundary are
shifted onto the ROI by the NUMS as well, the η value should be calculated according to Corollary 2.

Corollary 2. If all reference points are shifted onto the ROI, the η value in equation (2) is calculated
as:

η =
logα

logβ
− 1 (13)

where α = m
H and β = 1− (1− m

H )× τ .

The proof of Corollary 2 can be found in Appendix C of the supplementary document. Accordingly,
we should have a different upper and lower bounds for η as follows.

Corollary 3. If all reference points are shifted onto the ROI, we can set 0 < τ < 1.

The proof of Corollary 3 can be found in Appendix D of the supplementary document. Fig. 1(c)
gives an example that all reference points have been shifted onto the ROI.

3.6 Algorithmic Details

After describing the mathematical foundations of the NUMS, this section describes its algorithmic
implementation whose pseudo-code is presented in Algorithm 1. First of all, N =

(
H+m−1
m−1

)
reference

points w1, · · · ,wN are initialised via the Das and Dennis’s method (line 1 of Algorithm 1). Afterwards,
we find the pivot point (line 2 of Algorithm 1). Then, if the DM is interested in the boundary, we use
Theorem 1 to compute the exponent η of the PDF in equation (2); otherwise, we use Corollary 2 to do
so (line 3 to line 7 of Algorithm 1). During the main loop, for each reference point, we use equation (9)
to determine the position of the corresponding boundary point for the non-uniform mapping (line 9 of
Algorithm 1). If the currently investigating reference point lying on the boundary of Ψm and the DM
is not interested in the boundary, we use equation (12) to determine the step-length for shifting this
boundary reference point onto the ROI (line 11 of Algorithm 1); otherwise we use equation (5) and
equation (7) to serve this purpose (line 13 and line 14 of Algorithm 1). At the end of this loop, we
use equation (6) to calculate the new position of the biased reference point (line 15 of Algorithm 1).

3.7 Incorporation of the NUMS into a Decomposition-based EMO Algorithm

In principle, the NUMS can be readily incorporated into any decomposition-based EMO algorithm,
e.g. MOEA/D and NSGA-III, in a plug-in manner. In particular, we only need to replace the
reference points with the ones generated by the NUMS. However, for MOEA/D and its variants,
the commonly used subproblem formulation, e.g. the Tchebycheff function, will only result in the
population that are dominated by the ideal point [49], i.e. z∗ = (z∗1 , · · · , z∗m)T , where z∗i = min

x∈PS
fi(x)

for all i ∈ {1, · · · ,m}, which is unknown a priori. Although the ideal point can be estimated by the
currently evolving population, it is highly likely that the estimated ideal point is away from the DM
supplied aspiration level vector, as shown in Fig. 6. Note that it is fine if the DM wants to approximate
the boundary and the ROI together, since the solutions on the boundary can give the appropriate
ideal point. Otherwise, the algorithm will be struggling to obtain acceptable solutions if the DM is
only interested in the ROI.
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Algorithm 1: Non-uniform Mapping Scheme

Input:

• DM supplied aspiration level vector zr

• Number of divisions H

• Expected extent of ROI τ

• flag determines whether keep the boundary or not

Output:

• Biased reference points W ← {w1, · · · ,wN}

1 Initialize N ←
(
H+m−1
m−1

)
reference points w1, · · · ,wN on a canonical simplex Ψm by Das and

Dennis’s method;
2 Find the pivot point wp of zr on Ψm;
3 if flag = 1 then // keep the boundary

4 α← m
H , β ← 1− τ ;

5 else
6 α← m

H , β ← 1− (1− m
H )× τ ;

7 η ← logα
log β − 1;

8 for i← 1 to N do

9 ∆← min
1≤j≤m

[wpj ×
‖wp−wi‖
wpj−wij

]+;

10 if ∆− ‖wi −wp‖ < ε ∧ flag = 0 then
11 ρ← τ × ‖wi −wp‖;
12 else

13 δ ← ∆(∆−`
∆ )

1
η+1 , where `← ‖wi −wp‖;

14 ρ← ∆− δ;
15 wi ← wp + ρ× wi−wp

‖wi−wp‖ ;

16 return W
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Figure 6: The estimated ideal point z∗ is away from the DM supplied aspiration level vector zr.
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To overcome this aforementioned drawback, we use the following subproblem formation in MOEA/D
and its variants:

minimize g(x|w, zr) = max
1≤i≤m

{wi(fi(x)− zri )}

+ ρ
m∑
i=1

wi(fi(x)− zri )

subject to x ∈ Ω

, (14)

where Ω is the decision space and ρ is a sufficiently small positive number, which we set as 10−6 as
suggested in [41]. As discussed in [50], the optimum of equation (14) must be a Pareto-optimal solution,
and ρ is able to avoid the generation of weakly Pareto-optimal solutions. By using this subproblem
formulation, we can expect that the search directions are heading toward the DM supplied aspiration
level vector.

4 Proof-of-Principle Results

In this section, we empirically validate the effectiveness of the NUMS for assisting the decomposition-
based EMO algorithms seek the DM’s preferred solutions on problem instances with 2 to 10 objectives.
Our recently proposed MOEA/D variant based on stable matching model, named MOEA/D-STM [51]
is used as the baseline algorithm. Different from the canonical MOEA/D, where the selection of
the next parents is merely determined by the aggregation function value of a solution, MOEA/D-
STM treats subproblems and solutions as two sets of agents and considers their mutual preferences
simultaneously. In particular, the preference of a subproblem over a solution measures the convergence
issue, while the preference of a solution over a subproblem measures the diversity issue. Since the
stable matching achieves an equilibrium of the mutual preferences between subproblems and solutions,
MOEA/D-STM strikes a balance between convergence and diversity of the search process. Here we
use the simulated binary crossover (SBX) [52] and the polynomial mutation [53] as the reproduction
operators. For the SBX, the crossover probability is set as pc = 1.0 and its distribution index is set as
ηc = 10; for the polynomial mutation, the mutation probability is set as pm = 1

n and its distribution
index is set as ηm = 20. ZDT [54] and DTLZ [55] problem suites are chosen to form the benchmark.

Generally speaking, the proof-of-principle studies consist of two parts. First of all, we validate the
effectiveness of the NUMS on the problem instances with two and three objectives. Afterwards, we
empirically demonstrate some interesting extensions of the NUMS for handling various other scenarios,
i.e. problems with many objectives, multiple ROIs and an interactive preference incorporation.

4.1 Problems with Two and Three Objectives

Let us start from the two-objective ZDT1 problem instance that has a convex PF [54]. The population
size of MOEA/D-STM is set to 100 and it performs 300 generations. Fig. 7 shows a comparative results
of solutions obtained by MOEA/D-STM with different τ settings. From this figure, we clearly see that
the NUMS adapts the originally evenly distributed reference points to a biased distribution according
to the required extent. In the meanwhile, MOEA/D-STM provides a well approximation of the partial
PF with respect to those biased reference points. Note that, in order to approximate the whole PF
without preference on any particular region, we need to set τ = 1 − 2

99 rather than 1.0 according to
Theorem 1.

Next, we assess the performance of MOEA/D-STM with the NUMS on the three-objective DTLZ1
and DTLZ2 problem instances respectively. Here we set τ = 0.2 in the NUMS, and MOEA/D-STM
performs 300 generations for DTLZ2 and 1,000 generations for DTLZ1 due to its multi-modality.
As shown in Fig. 8 and Fig. 9, with either an infeasible (zr = (0.3, 0.3, 0.2)T for DTLZ1) or feasible
(zr = (0.3, 0.5, 0.6)T for DTLZ2) aspiration level vector, MOEA/D-STM has no difficulty in finding the
preferred solutions in the ROI. Furthermore, MOEA/D-STM also well approximates the boundaries
for both cases.
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Figure 10: Solutions obtained by MOEA/D-STM on 5-objective DTLZ2 problem where zr =
(0.3, 0.1, 0.4, 0.2, 0.3)T is represented as the red dotted line.
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Figure 11: Solutions obtained by MOEA/D-STM on 10-objective DTLZ2 problem where zr =
(0.3, 0.3, 0.3, 0.1, 0.3, 0.55, 0.35, 0.35, 0.25, 0.45)T is represented as the red dotted line.

4.2 Problems with Many Objectives

Now let us consider the five-objective DTLZ2 problem instance where zr = (0.3, 0.1, 0.4, 0.2, 0.3)T .
Now, we setH = 7 in the Das and Dennis’s method which generates 330 uniformly distributed reference
points, and τ is set to 0.1 in the NUMS. Fig. 10(c) gives the corresponding Pareto-optimal points,
with respect to the biased reference points given in Fig. 10(b), according to the method developed
in [56]. Comparing Fig. 10(a) with Fig. 10(c), we can see that MOEA/D-STM, after performing 1,000
generations, has a well approximation to both the ROI and the boundary points.

As discussed in [56] and [57], in order to have intermediate reference points within the simplex,
we should set H ≥ m in the Das and Dennis’s method. Otherwise, all reference points should lie on
the boundary of the simplex. However, in a large-dimensional space, we can have a huge amount of
reference points even when H = m. For example, when m = 10, the Das and Dennis’s method can
generate

(
10+10−1

10−1

)
= 92378 uniformly distributed reference points if H = 10. Obviously, current EMO

algorithms cannot hold such huge number of solutions in a population. Even worse, when H = m,
there is only one intermediate reference point which lies in the center of the simplex. Thus, the original
NUMS might not be directly applicable when facing a large number of objectives. Inspired by the
multi-layer weight vector generation method developed in [56] and [57], we make a slight modification
to adapt the NUMS to the many-objective scenario. First of all, we use the Das and Dennis’s method,
where H < m, more than one time, to generate (l > 1) layers of reference points. Afterwards, we use
the method developed in Section 3.5 to shift these reference points, which lie on the boundary of the
simplex, onto the ROI layer by layer. Fig. 11(b) shows an example of 661 reference points generated
by the multi-layer NUMS where zr = (0.3, 0.3, 0.3, 0.1, 0.3, 0.55, 0.35, 0.35, 0.25, 0.45)T . In particular,
we first use the Das and Dennis’s method to generate l = 3 layers of reference points. Since we set
H = 3, each layer contains 220 reference points. Then two layers of them are shifted onto the ROI,
where the shrinkage factor τ is set to 0.4 and 0.2 respectively. Fig. 11(a) shows the final solutions
obtained by MOEA/D-STM after 1,000 generations. Comparing to the corresponding Pareto-optimal
points shown in Fig. 11(c), we can see that MOEA/D-STM still has a satisfactory approximation to
the ROI in a 10-objective space.

4.3 Investigations on multiple ROIs

In practice, the DM might not be sure about his/her exact preferences and he/she would like to
simultaneously explore several ROIs. In this case, the DM would like to supply more than one, say
T > 1, aspiration level vectors at a time. To accommodate multiple ROIs, we only need to apply
the NUMS T times with respect to each aspiration level vector. Note that each time the NUMS can
preserve the boundary reference points, but we only need to keep these boundary reference points
once. In other words, the duplicated boundary reference points are exempted from the final reference
point set. Fig. 12 shows an example of two aspiration level vectors. In particular, the gray points are
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the adapted reference points for each ROI; while the black points are the final solutions obtained by
MOEA/D-STM with respect to the corresponding reference points. From the experimental results,
we can clearly see that MOEA/D-STM with the NUMS is also able to approximate multiple ROIs
simultaneously.
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Figure 12: Solutions obtained by MOEA/D-STM with two different reference points on DTLZ2 prob-
lem.

4.4 Interactive Scenario

In practice, it is not uncommon that the DM is not fully confident about his/her elicited preference
information due to the black box property of the problem itself. Therefore, an interactive decision-
making procedure where the DM can progressively adapt his/her preference information during the
optimisation process is attractive in the preference-based EMO. Since the NUMS can easily adapt the
distribution of reference points to be biased toward the ROI, it facilitates the interactive scenario.
Moreover, also due to the lack of the knowledge of the PF, the DM can easily specify an aspiration
level vector which is beyond the boundary of the PF. Since the NUMS is able to preserve the boundary
reference points, it finally helps the DM better understand the PF (e.g. its general shape, boundary,
ideal and nadir points) and further adjusts his/her preference information. In Fig. 13, we describe an
interactive run, which includes three cycles, of MOEA/D-STM on the DTLZ2 problem. We call a run
of MOEA/D-STM for a certain number of generations specified by the DM as a cycle. First, as shown
in Fig. 13(a), the DM specifies an aspiration level vector zr1 = (1.4, 1.9, 1.5)T beyond the PF. After
200 generations, MOEA/D-STM finds the solutions not only crowd in the ROI, but also distribute
along the boundary. Thereafter, the DM realises that zr1 is a bad choice, and then he/she resets
another aspiration level vector, say zr2 = (0.7, 0.6, 0.3)T . In addition, since the DM already knows the
boundary of the PF, he/she might not be interested in the boundary any longer. Thus, he/she sets the
NUMS to adapt all reference points to the ROI. By using the final population of the first interaction
as the initial population, MOEA/D-STM finally finds the solutions in the ROI after 200 generations.
However, we assume that the DM still does not satisfy them and he/she sets another aspiration level
vector, say zr3 = (0.3, 0.4, 0.8)T . After 200 generations, as shown in Fig. 13(c), MOEA/D-STM finds
the solutions in the vicinity of the ROI. This time, the DM is comfortable with the obtained solutions
and this interactive EMO process terminates.

5 Comparisons with the State-of-the-Art

The proof-of-principle results shown in Section 4 fully demonstrated the effectiveness of the NUMS for
assisting a decomposition-based EMO algorithm (here we use MOEA/D-STM as an example) search
for preferred solutions in the ROI. As discussed in Section 2, there are some other preference-based
EMO algorithms proposed in the EMO literature. In this section, we compare the performance of
three state-of-the-art decomposition-based EMO algorithms, i.e. MOEA/D-STM, MOEA/D [6] and
NSGA-III [16], assisted by the NUMS, where τ is set as 0.2, with three state-of-the-art preference-
based EMO algorithms, i.e. g-NSGA-II [45], R-NSGA-II [12] and r-NSGA-II [13]. Note that different
preference elicitation methods represent DM’s distinct perspectives for comparing preferred solutions.
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Figure 13: Interactive scenario on DTLZ2 problem.

For peer comparison purpose, here all these preference-based EMO algorithms use the aspiration level
vector to elicit the DM’s preference information. All the multi-objective optimisers use the SBX and
the polynomial mutation for offspring generation. The corresponding parameters are set the same
as Section 4. In the experiments, we choose the popular DTLZ1 to DTLZ4, and WFG41 to WFG48
test problems [58] to form the benchmark suite. Note that WFG41 to WFG48 problems are designed
to have various complex PF shapes, e.g. sharp convex/concave, mixed shape and disconnected PF
segments. For DTLZ problems, m ∈ {3, 5, 8, 10}; while for WFG problems, m ∈ {2, 3, 5, 8, 10}.
The settings of aspiration level vectors used in our experiments are given in Appendix E of the
supplementary document. The population size is set as N = 100 when m = 2; N = 92 when m = 3;
N = 210 when m = 5; N = 360 when m = 8; and N = 660 when m = 10, respectively. As
for the NUMS, the number of divisions is set as H = 13 when m = 3 and H = 6 when m = 5.
When the number of objectives is larger than 5, we use a 3-layer method suggested in Section 4.2 to
generate the initially evenly distributed reference points. In particular, we set H = 3 for each layer.
In our experiments, the stopping criterion of a preference-based EMO algorithm is the number of
function evaluations (FEs), where the detailed settings are given in Appendix E of the supplementary
document. As for R-NSGA-II, the additional parameter ε, used in its ε-clearing procedure, is set
according to [12], i.e. ε = 0.001 when m = 2 and ε = 0.01 otherwise.

To quantitatively compare the performance of different preference-based EMO algorithms for ap-
proximating the ROI, we use our recently developed R-HV [59] and the Quality metric developed
in [60, 61] as the performance indicators. In particular, the basic idea of R-HV computation is to
pre-process the obtained preferred solution set S, according to the DM supplied zr, before using the
hyperovlume (HV) [62] for performance assessment. More interested readers can find the technical
details of the R-HV computation in [59]. Similar to HV, the larger is the R-HV value, the better is
the quality of S for approximating the ROI.

In the experiments, each algorithm is performed 31 independent runs. In the data tables, we show
the median and the interquartile range (IQR) of metric values for different problem instances with
various aspiration level vector settings. In particular, the best median metric values are highlighted in
bold face with a grey background. To have a statistically sound conclusion, we carry out the statistical
analysis as suggested in [63] to validate the statistical significance of the results. More detailed
description of this statistical analysis framework is provided in Appendix F of the supplementary
document. Here we only present the results on R-HV, while the data on Quality metric are put in
Section H of the supplementary document. In addition, to have a visual comparison, we also show
the scatter plots and the parallel coordinate plots (PCP), in the supplementary document, of the final
solutions obtained by different algorithms having the best R-HV value.

5.1 Experimental Results

Due to the page limit, we only discuss the results on DTLZ problems, while the discussion on WFG
problems can be found from Section G of the supplementary document. From the results shown
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in Table 1, we can clearly see that the decomposition-based EMO algorithms, i.e. MOEA/D-STM,
MOEA/D and NSGA-III, assisted by the NUMS are the best candidates for approximating the ROI
of various test problems. Their superiority becomes more evident with the increase of the number of
objectives. In the following paragraphs, we explain the results instance by instance.

Let us start from the DTLZ1 problem which has a linear PF shape, i.e. a hyper-plane intersects
with each coordinate at 0.5. Note that DTLZ1 also has many local optima in its search space, which
obstruct the convergence toward the global PF. In the 3-objective case, all algorithms, except g-NSGA-
II, are able to drive solutions to converge toward the PF. As the DM expects the ROI to be 20% of the
whole PF, solutions found by the decomposition-based EMO algorithms assisted by the NUMS are
the best candidates with respect to the DM’s expectation. Fig. 14 shows the scatter plots of solutions
obtained by all algorithms with respect to zr = (0.05, 0.05, 0.2). From this figure, we can see that
solutions obtained by three decomposition-based EMO algorithms assisted by the NUMS are consistent
and well distributed. In contrast, although the solutions found by R-NSGA-II are in the ROI, they
crowd in a narrow region. In this case, R-NSGA-II cannot provide as many trade-off alternatives as
the decomposition-based EMO algorithms assisted by the NUMS. As shown in Fig. 14, solutions found
by r-NSGA-II do not converge to the ROI. With the increase of the number of objectives, g-NSGA-II
and r-NSGA-II have difficulty in driving solutions toward the PF due to the multi-modal property of
DTLZ1. As for R-NSGA-II, solutions are even more focused in the high-dimensional space as shown
in Fig. 15, a 8-objective example with zr = (0.01, 0.02, 0.07, 0.02, 0.06, 0.2, 0.1, 0.01)T . Although the
spread of the preferred solutions obtained by R-NSGA-II can be controlled by its ε parameter, there
is no rule-of-thumb for tuning it to adapt to the DM’ expected extent of the ROI.
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Figure 14: Scatter plots of solutions on 3-objective DTLZ1 where zr = (0.05, 0.05, 0.2).

DTLZ2 is a relatively simple test problem, where the objective functions of a Pareto-optimal
solution x∗ satisfies:

∑m
i=1 f

2
i (x∗) = 1. All algorithms do not have too much difficulty in driving

solutions toward the PF. As the examples shown in Fig. 16 and Fig. 17, the performance of three
decomposition-based EMO algorithms assisted by the NUMS are consistent. In contrast, the spread
of the solutions obtained by the other three preference-based EMO algorithms is not fully controllable.
In particular, solutions found R-NSGA-II and r-NSGA-II are very focused while those found by g-
NSGA-II scattered in a wide region.

The PF of DTLZ3 is the same as DTLZ2. But its search space contains many local optima which
can make an EMO algorithm get stuck at any local PF before converging to the global PF. Similar to
the observations in DTLZ1, g-NSGA-II cannot find any converged solutions in all 3- to 10-objective
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Figure 15: PCP of solutions on 8-objective DTLZ1 where zr =
(0.01, 0.02, 0.07, 0.02, 0.06, 0.2, 0.1, 0.01)T .
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Figure 16: Scatter plots of solutions on 3-objective DTLZ2 where zr = (0.2, 0.5, 0.6).
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Figure 17: PCP of solutions on 8-objective DTLZ2 where zr = (0.3, 0.1, 0.4, 0.25, 0.1, 0.15, 0.4, 0.25)T .

cases. The performance of the decomposition-based EMO algorithms assisted by the NUMS is very
robust. It is interesting to note that, as the example shown in Fig. 18, solutions found by r-NSGA-II
do not converge well to the ROI in the 3-objective case. This might be caused by the failure of its
adaptive parameter control given a limited number of FEs. As shown in Fig. 19, we also notice that
solutions found by r-NSGA-II do not converge to the PF when the number of objectives becomes
large.

DTLZ4 also has the identical PF shape as DTLZ2. However, in order to investigate an EMO algo-
rithm’s ability to maintain a good distribution of solutions, DTLZ4 introduces a parametric variable
mapping to the objective functions of DTLZ2. This modification allows a biased density of points
away from fm(x) = 0. It is interesting to note that the performance of all these algorithms are similar
to the DTLZ2. As the examples shown in Fig. 20 and Fig. 21, g-NSGA-II cannot drive all solutions
converge to the PF due to the biased density of solutions. As shown in Fig. 20, some solutions found
by r-NSGA-II are still drifted away from the PF when encountering an attainable aspiration level
vector, i.e. zr = (0.7, 0.8, 0.5), in the 3-objective case.

5.2 Summary of the Experimental Results

Based on the observations in Section 5.1, we summarise the comparisons between the decomposition-
based EMO algorithms assisted by the NUMS and the other preference-based EMO algorithms as
follows.

• Solutions found by three decomposition-based EMO algorithms assisted by the NUMS are con-
sistent. This is because the search directions of a decomposition-based EMO algorithm is deter-
mined by the reference points. By using the NUMS, the reference points are transformed from
an even distribution to a biased distribution toward the DM supplied aspiration level vector.
In contrast, the driving force of the other preference-based EMO algorithms is to find solutions
close to the DM supplied aspiration level vector. Since this ‘closeness’ by itself is vague, it brings
uncertainty to the search process.
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Figure 18: Scatter plots of solutions on 3-objective DTLZ3 where zr = (0.2, 0.5, 0.6).
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Figure 19: PCP of solutions on 8-objective DTLZ3 where zr = (0.3, 0.1, 0.4, 0.25, 0.1, 0.15, 0.4, 0.25)T .
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Figure 20: Scatter plots of solutions on 3-objective DTLZ4 where zr = (0.7, 0.8, 0.5).
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Figure 21: PCP of solutions on 8-objective DTLZ4 where zr = (0.3, 0.1, 0.4, 0.25, 0.1, 0.15, 0.4, 0.25)T .
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Table 1: Comparison results of median R-HV values and the IQR obtained by six preference-based
EMO algorithms on DTLZ1 to DTLZ4 problems with unattainable and attainable aspiration level
vectors.

Problem m ref MOEA/D-STM MOEA/D NSGA-III g-NSGA-II r-NSGA-II R-NSGA-II

DTLZ1

3
1 7.6265(1.36E-2) 7.5576(4.02E-3)† 7.5421(7.44E-1)† – 7.5020(4.20E-1)† 7.0634(3.52E-1)†

2 9.7153(5.05E-3) 9.6196(4.59E-3)† 9.5774(1.32E-1)† – 9.4421(5.32E-1)† 9.5067(2.42E-1)†

5
1 30.3722(3.28E-2) 29.6851(6.83E-2)† 30.3514(2.29E-3)† 0.0(0.0)† 0.0(0.0)† 27.5884(1.83E+0)†

2 39.9092(1.90E-1) 39.5070(8.40E-2)† 39.2911(2.01E-2)† 0.0(0.0)† 0.0(0.0)† 31.0169(8.04E-1)†

8
1 256.1972(1.49E+0) 219.2751(2.12E+0)† 212.5726(9.78E-2)† – 0.3206(6.57E+0)† 253.8647(1.58E+0)†

2 394.1900(2.21E+0) 373.3217(1.18E+0)† 363.1069(8.42E-2)† – 0.8242(3.31E+1)† 168.8741(3.10E+0)†

10
1 983.9530(5.09E+0) 967.8723(4.19E+0)† 971.8743(6.21E+0)† – 0.0(0.0)† 767.3413(3.36E+1)†

2 1206.1236(3.38E+1) 1184.5294(4.23E+1)† 1169.5398(1.42E+1)† 0.0(0.0)† 0.0(0.0)† 853.7466(3.46E+1)†

DTLZ2

3
1 7.5535(9.37E-3)† 7.5907(2.73E-2)† 7.6154(3.08E-2) 7.4123(2.20E-1)† 6.6851(2.43E-1)† 6.9901(1.34E-1)†

2 10.3925(3.72-3) 10.3853(2.98E-2)† 10.3847(1.13E-2)† 10.3409(1.60E-1)† 7.8869(1.86E+0)† 9.8209(2.17E-1)†

5
1 23.9962(1.66E-1) 21.3977(1.44E-1)† 22.4874(3.82E-2)† 0.1010(1.67E-1)† 17.0738(4.30E+0)† 18.5786(2.29E+0)†

2 54.1961(3.16E+0) 49.8608(3.77E-1) 49.4824(7.20E-2)† 0.9246(8.99E-1)† 20.8631(1.83E+0)† 20.0445(3.14E+0)†

8
1 156.3257(3.81E+0)† 169.0146(1.87E+1) 155.7312(9.33E-1)† 0.0(0.0)† 148.6432(3.71E+1)† 128.4391(4.14E+1)†

2 537.7850(1.02E+1) 467.3111(4.67E+1)† 383.7051(1.12E+0)† 0.0002(6.75E-3)† 225.2263(2.88E+1)† 200.2079(2.14E+1)†

10
1 681.1106(9.34E+0) 613.2450(2.81E+1) 618.5795(1.07E+1)† 0.0(0.0)† 583.1804(2.24E+2)† 552.1471(1.24E+2)†

2 824.7383(1.36E+1)† 810.1624(2.52E+1)† 836.2942(1.52E+1) – 253.0452(8.23E+1)† –

DTLZ3

3
1 7.4957(3.17E-2)† 7.6179(1.58E-2) 6.4873(1.44E+0)† – 6.8314(5.23E-1)† 7.0110(2.26E-1)†

2 10.3562(1.15E-1)† 10.3889(1.48E-2) 9.1242(7.05E-1)† – 9.2263(5.18E-1)† 9.4979(2.59E-1)†

5
1 23.9185(1.88E-1) 21.3864(9.77E-1)† 22.4379(6.41E-2)† 0.0(0.0)† 0.0(0.0)† 19.4719(1.70E+0†

2 54.1003(3.19E+0) 50.3797(5.03E-1)† 49.5082(1.33E-1)† 0.0(0.0)† 0.0(0.0)† 19.3515(1.85E+0)†

8
1 156.2452(5.22E+0)† 168.2266(1.60E+1) 155.0874(1.06E+0)† – 0.0(0.0)† 142.7653(2.32E+1)†

2 539.3116(1.13E+1) 485.6386(3.74E+1)† 383.3493(5.65E+0)† – 0.0(0.0)† 209.8244(2.91E+1)†

10
1 669.1227(2.52E+1) 619.1556(1.23E+1)† 616.6172(9.07E+0)† – 0.0(0.0)† 598.6863(1.14E+2)†

2 819.9696(1.43E+1) 816.5128(3.77E+1)† 818.4483(1.35E+1)† – 0.0(0.0)† –

DTLZ4

3
1 7.5538(6.98E-3)† 7.6164(8.44E-3) 5.5442(2.11E+0)† 7.4036(1.70E-1)† 6.8757(7.78E-2)† 7.2718(7.86E-2)†

2 10.3923(6.16E-3) 10.3728(1.63E-1)† 9.2591(2.99E+0)† 10.2584(2.26E-1)† 7.0280(2.53E+0)† 10.1231(1.71E-1)†

5
1 23.9222(3.20E-1) 21.3998(7.09E-3)† 22.4862(1.27E-2)† 3.9178(4.67E+0)† 18.6539(9.58E-1)† 16.6939(1.14E+0)†

2 50.8973(1.80E+0) 50.1681(5.02E-1)† 49.4684(3.70E-2) † 11.2802(1.21E+1) 16.1376(2.14E+0)† 15.3083(3.37E+0)†

8
1 155.8001(3.43E-1)† 181.2326(6.42E+0) 155.9706(6.61E-1)† 0.0(0.0)† 144.1317(2.12E+1)† 119.5649(7.86E+0)†

2 540.3963(5.04E+0)† 541.2044(4.52E+1) 383.6760(2.45E+0)† 0.0(1.23E-2)† 220.2359(2.00E+1)† 190.5484(7.55E+0)†

10
1 679.4695(1.21E+1) 603.9090(2.12E+1)† 621.5302(7.06E+0)† 0.0(0.0)† 636.6269(1.15E+2)† 421.0407(2.92E+1)†

2 828.9138(1.14E+1)† 774.1783(3.92E+1)† 843.7055(4.30E+0) – 187.1426(7.42E+1)† –

† denotes the best median metric value is significantly better than the other peers according
to the statistical analysis described in Appendix F of the supplementary document. ref = 1
means the unattainable aspiration level vector while ref = 2 means the attainable aspiration level
vector. – means all solutions obtained by the corresponding algorithm are dominated by the other
counterparts, thus no solution can be used for R-HV computation.
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• For the decomposition-based EMO algorithms assisted by the NUMS, the extent of the approx-
imated ROI is controlled by the DM in an intuitively understandable manner. For the other
preference-based EMO algorithms, the approximated ROI can be any crowd of solutions ‘close’
to the DM supplied aspiration level vector. Although there are some parameters that control
this extent, there is no rule-of-thumb to tweak those parameters.

• As shown in Section 4, the NUMS can help a decomposition-based EMO algorithm not only find
solutions in the ROI, but also those lying on the boundary of the PF. In contrast, The other
preference-based EMO algorithms can only approximate the ROI.

• Different from the other preference-based EMO algorithms, the NUMS does not incur additional
computations to the baseline algorithm. As introduced in Section 3.7, we only need to change
the distribution of the reference points to be biased toward the ROI. As shown in Table VIII of
the supplementary document, the average CPU time costs of the NUMS assisted algorithms are
almost the same as the baseline algorithms.

6 Conclusions

This paper present a systematic way to incorporate the DM’s preference information into the decomposition-
based EMO methods in either a priori or interactive manner. In particular, the DM’s preference
information is modelled as an aspiration level vector which represents the DM’s expected value on
each objective. Our basic idea is a non-uniform mapping scheme that transforms the originally evenly
distributed reference points into a biased distribution. In particular, the closer to the DM specified as-
piration level vector, the more reference points in view of their higher relevance to the DM’s preference
information. Different from the existing literature, the ROI’s size is fully controllable and intuitively
understandable according to a quantitative definition. To facilitate the interactive decision-making
process, our proposed NUMS is able to preserve the ones located on the boundary as well, given the
DM’s requirements. By incorporating the NUMS into some decomposition-based EMO algorithms,
i.e., MOEA/D-STM, MOEA/D and NSGA-III, its effectiveness is validated by proof-of-principle ex-
periments and comparative studies with other state-of-the-art preference-based EMO algorithms on a
variety of benchmark problems with 2 to 10 objectives.

It is clear that the distribution of the biased reference points is determined by the transformation
function defined in equation (2). One direct extension of this paper is to use some other distribution
functions that are tailored according to the DM’s requirements. As discussed in Section 2, there are
several other ways of eliciting the DM’s preference information. The other extension of this work is
the adaptation of the NUMS to other types of preference model. To further facilitate the interactive
process, it is worth considering the combination of human computer interaction techniques [64] and the
preference-based EMO. Moreover, discrete and mixed variable optimisation problems are ubiquitous
in real-world applications, e.g. scheduling [60, 61]. It is interesting to study the application of the
NUMS for finding DM preferred solutions in those cases.
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