
Efficient Non-domination Level Update Method for

Steady-State Evolutionary Multi-objective Optimization∗

Ke Li1, Kalyanmoy Deb2, Qingfu Zhang2 and Qiang Zhang2

1Department of Computer Science, University of Exeter, North Park Road, Exeter, EX4 4QF, UK
2Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI

48824, USA
3Department of Computer Science, City University of Hong Kong, Kowloon, Hong Kong SAR

4Institute of Informatics, University of Warsaw, 02-097 Warsaw, Poland

Abstract: Non-dominated sorting, which divides a population into several non-domination
levels, is a basic step in many evolutionary multi-objective optimization algorithms. It has been
widely studied in a generational evolution model, where the environmental selection is performed
after generating a whole population of offspring. However, in a steady-state evolution model, where a
population is updated right after the generation of a new candidate, the non-dominated sorting can
be extremely time consuming. This is especially severe when the number of objectives and population
size become large. In this paper, we propose an efficient non-domination level update method to
reduce the cost for maintaining the non-domination level structure in steady-state evolutionary multi-
objective optimization. Instead of performing the non-dominated sorting from scratch, our method
only updates the non-domination levels of a limited number of solutions by extracting the knowledge
from the current non-domination level structure. Notice that our non-domination level update method
is performed twice at each iteration. One is after the reproduction, the other is after the environmental
selection. Extensive experiments fully demonstrate that, comparing to the other five state-of-the-art
non-dominated sorting methods, our proposed method avoids a significant amount of unnecessary
comparisons, not only in the synthetic data sets, but also in some real optimization scenarios. Last
but not least, we find that our proposed method is also useful for the generational evolution model.

Keywords: Pareto dominance, non-domination level, non-dominated sorting, computational
complexity, steady-state evolutionary multi-objective optimization

1 Introduction

A multi-objective optimization problem (MOP) can be stated as follows:

minimize F(x) = (f1(x), · · · , fm(x))T

subject to x ∈ Ω
(1)

where Ω =
∏n

i=1[ai, bi] ⊆ Rn is the decision (variable) space, x = (x1, . . . , xn)T ∈ Ω is a candidate
solution. F : Ω → Rm constitutes m conflicting objective functions, and Rm is called the objective
space. A solution x1 is said to Pareto dominate another one x2 (denoted as x1 � x2) if it has at least
one better objective while not being worse in any other objective.

Non-dominated sorting (NDS) is a procedure that divides a population of solutions into several
non-domination levels (NDLs) according to their dominance relationships. It gives a relative quality
of solutions, belonging to a specific NDL, with respect to the others. The NDS is a basic step in
the evolutionary multi-objective optimization (EMO), it becomes time-consuming with the increase
of the number of objectives and population size. The first NDS algorithm was proposed in [1]. Its
computational complexity is O(mN3), where N is the population size. Later, the time-consuming
problem of the NDS was recognized and addressed by Deb et al. in [2]. They developed the fast
NDS method which avoids some unnecessary dominance comparisons by taking advantages of the

∗This article is accepted for publication in IEEE Transactions on Cybernetics. Copy right is transferred to IEEE
while this is a manuscript version.

1

existing comparison results. Its computational complexity is reduced to O(mN2). Inspired by the
divide-and-conquer idea suggested in [3], Jensen [4] proposed a NDS method with a computational
complexity of O(Nlogm−1N), a significant speedup and reduction. However, this method fails to
deal with the situation when two solutions share the same value for a certain objective. By inferring
dominance relationship based on the transitivity property of Pareto dominance and previous compar-
isons, McClymont and Keedwell [5] suggested two methods, called climbing sort and deductive sort,
to reduce the computational cost of the NDS. Although these two methods hold the same worst-case
complexity of O(mN2) as the fast NDS, empirical studies showed that both of them outperform the
fast NDS in terms of CPU time and number of dominance comparisons. However, these two meth-
ods are designed specifically for populations where the dominance relationships between solutions are
relatively common, which unfortunately does not hold for many-objective problems with more than
three objectives. In order to save the number of objective comparisons in many-objective scenarios,
Wang and Yao proposed a corner sort method [6]. Its basic idea is to use the non-dominated solutions
to ignore the solutions that they dominate. Recently, Zhang et al. [7] developed a computationally
efficient NDS method, where a solution only needs to compare with those sorted ones when it is going
to be added to a NDL.

According to the selection scheme, the existing EMO has two evolution models: one is the gener-
ational evolution model and the other is the steady-state evolution model [8]. The major difference
between them is the moment to perform the environmental selection. In the prior case, a population
of offspring solutions are generated before competing with their parents; while in the latter case, the
parent population is updated once a new candidate solution has been generated. Since the population
can be updated immediately before generating a whole population of offspring, the elite information
can be timely utilized. This characteristic can make a steady-state EMO algorithm be computa-
tionally faster for approaching the Pareto-optimal front than its generational counterpart on some
problems. However, this “first come first serve” mechanism also has the risk of being trapped in local
optima. In the EMO literature, there exists many algorithms based on the steady-state evolution
model (e.g., [9–15]). In some recent studies (e.g., [8, 16, 17]), the steady-state EMO algorithm has
shown better performance, in terms of convergence and diversity, than its generational counterparts
on some problems. To our best knowledge, most, if not all, studies on the NDS are discussed in the
context of a generational evolution model, whereas few have considered the situation for a steady-state
evolution model yet. In [18], Buzdalov et al. presented an incremental NDS for the steady-state EMO.
But unfortunately, this method can only work for the two-dimensional case.

In fact, the NDL structure of the parent population is already known before generating a new
candidate solution. The incorporation of a new solution usually does not shake the entire NDL
structure. On the contrary, only a limited number of solutions in the parent population need to change
their NDLs. Therefore, it is unnecessary to perform the NDS from scratch each time. Moreover, the
solution, which has to change its NDL, only need to move forward or backward one NDL. Bearing
these properties in mind, this paper proposes an efficient non-domination level update (ENLU) method
to reduce the cost for maintaining the NDL structure in the steady-state EMO. By using the ENLU
method, a steady-state EMO algorithm only needs to perform the NDS once at the beginning, and
it just updates the NDL structure thereafter. More specifically, after the reproduction, the ENLU
method locates the NDL to which the new candidate belongs. Afterwards, it recursively finds the
solutions that need to change their NDLs and move them backward to their next NDLs. Analogously,
after the environmental selection, the ENLU method recursively finds those solutions that need to
change their NDLs and move them forward to their prior NDLs. The time complexity of ENLU
method is O(m) in the best case and O(mN2) in the worst case. Although the ENLU method holds
the same worst-case complexity as the fast NDS method, extensive experiments demonstrate that it
avoids a significant amount of unnecessary comparisons in practice. Furthermore, we find that the
ENLU method is also useful for the generational evolution model.

In the rest of this paper, we first discuss the motivations of this work in Section 2. Then, the
implementation details of our proposed ENLU method are described step by step in Section 3. After-
wards, its computational complexity is theoretically analyzed in Section 4. Next, Section 5 empirically
investigates the performance of ENLU method on several synthetic data sets and real optimization

2

Algorithm 1: Steady-state NSGA-II

Input: algorithm parameters
Output: population P

1 Initialize a population P ← {x1, · · · ,xN};
2 while termination criterion is not met do
3 Mating selection and generate an offspring xc;
4 Use NDS to divide P ′ ← P

⋃
{xc} into several NDLs, i.e., F1, · · · , Fl;

5 Identify the worst solution x′ ∈ Fl and set P ← P ′ \ {x′};
6 return P ;

scenarios. Finally, Section 6 concludes this paper and provides some future directions.

2 Motivations

In order to understand the basic principles of the steady-state evolution model, Algorithm 1 presents
the pseudo-code of a steady-state version of the classic elitist NDS genetic algorithm (NSGA-II) [8].
At the beginning, a population P is initialized via a uniform sampling over the decision space (line
1 in Algorithm 1). During the main while loop, P is updated as soon as the generation of a new
candidate solution xc. The environmental selection involves two steps. One is using the NDS to
divide the hybrid population P ′, a combination of P and xc, into l (l ≥ 1) NDLs, i.e., F1, · · · , Fl (line 4
in Algorithm 1). More specifically, all non-dominated solutions are at first assigned to F1. Afterwards,
solutions assigned to F1 are temporarily removed from P ′ and the non-dominated solutions in P ′ \F1

are assigned to F2, so on and so forth. Note that each solution in Fi is either non-dominated with
or dominated by at least one solution in Fj , where i > j and i, j ∈ {1, · · · , l}. After the NDS, we
eliminate the worst solution x′ at the last NDL Fl from P ′ to form a new P for the next iteration
(line 5 in Algorithm 1).

Since the NDS requires pair-wise dominance comparisons among solutions, it can be a very time-
consuming part in an EMO algorithm. To illustrate this problem, we perform two simple experiments
by using the steady-state NSGA-II on several DTLZ2 test instances [19]. In the first experiment, the
population size is set to 100 as a constant, while the number of objectives grows from 2 to 20 with a
step size 1. For the second experiment, the number of objectives is fixed to 5, while the population
size increases from 100 to 2,000 with a step size 100. The number of generations is set as 1,000 for all
cases. From Fig. 1, we clearly see that the NDS indeed consumes a dominating amount of CPU time
in the steady-state NSGA-II. Furthermore, the CPU time cost by the NDS increase with the number
of objectives and the population size. One may argue that this ratio will changes in a computationally
expensive optimization scenario, where the function evaluation is very time-consuming. Nevertheless,
it is of significant importance in practice to reduce the cost of the NDS (or in other words, maintaining
the NDL structure), especially for a large number of objectives and population size.

To this end, an idea naturally comes out: is it really necessary to perform NDS from scratch, each
time, during the environmental selection of the steady-state evolution model? Let us consider a simple
example presented in Fig. 2, where there are three NDLs, i.e., F1 = {x1}, F2 = {x2,x3,x4}, F3 =
{x5,x6,x7}. If a new candidate solution, say xc, comes in, none of these seven solutions need to
change their NDLs and we only need to insert xc into F1. As for the other example shown in Fig. 3,
x4, x6 and x7 need to move themselves backward to their next NDLs if the new candidate solution
xc comes in. Analogously, the NDL structure might also change after eliminating a solution by the
environmental selection. Let us consider the same examples shown in Fig. 2 and Fig. 3 in an opposite
direction. For simplicity, we assume that just xc is eliminated after the environmental selection. For
the example presented in Fig. 2, none of the remaining solutions need to change their NDLs, while for
the example shown in Fig. 3, x4, x6 and x7 need to move themselves forward to their prior NDLs.

Based on the above discussions, we notice that the addition and elimination of a solution usually
does not shake the entire NDL structure of the current population. On the contrary, only a limited
number of solutions need to update their NDLs. Therefore, it is unnecessary to perform the NDS

3

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

1

2

3

4

5

6

7
x 10

4

Number of Objectives

C
P

U
 T

im
e

 (
m

s
)

NDS

Total

(a)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0

5

10

15
x 10

7

Population Size (x100)

C
P

U
 T

im
e

 (
m

s
)

NDS

Total

(b)

Figure 1: The comparisons of CPU time (millisecond) cost by the NDS and the steady-state NSGA-II.

add

eliminatex4

f1

f2

F1

F2

F3

x3

x2

x1

x6

x7

x5

F1

F2

F3

x6

x7

x5

x4

x3

x2

x1

xc

f1

f2

Figure 2: The NDL structure keeps unchanged when xc is added and eliminated.

4

x4

x3

xc

add

eliminate

x2

x1

x5

x6

x7

F1

F2

F3

F4

x4

f1

f2

f1

f2

F1

F2

F3

x3

x2

x1

x6

x7

x5

Figure 3: x4, x6 and x7 need to change their NDLs when xc is added and eliminated.

from scratch at each iteration of a steady state EMO algorithm. Instead, we only need to figure out
the following three questions when a new candidate solution xc comes in.

1. Which NDL xc belongs to?

2. Is there any solution in P that needs to change its NDL?

3. If yes, what is the new NDL such solution belongs to?

Analogously, after eliminating an inferior solution by environmental selection, we need to figure
out the following two questions to update the NDL structure of the newly formed population.

1. Is there any solution in the newly formed P that needs to change its NDL?

2. If yes, what is the new NDL such solution belongs to?

In the next section, we will illustrate our ENLU method for addressing the above mentioned
considerations.

3 Efficient Non-domination Level Update Method

Instead of performing the NDS from scratch, the ENLU method takes advantages of the existing
knowledge of the current population to update the NDL structure. As discussed in Section 2, the
NDL structure might be changed both when we add a new candidate solution after reproduction and
eliminate an inferior one after environmental selection. Bearing these two scenarios in mind, we will
illustrate the technical details of the ENLU method step by step in the following paragraphs.

3.1 ENLU Method After Reproduction

According to the discussion in Section 2, we have to figure out the following three issues.

3.1.1 Which NDL xc belongs to

Here we suggest a top-down approach to identify the NDL to which xc belongs. More specifically,
starting from F1, we perform a pair-wise dominance comparison between xc and all solutions in F1.

5

If xc is non-dominated with all solutions in F1 or it dominates some ones therein, xc is added to F1.
On the flip side, xc does not belong to F1 in case it is dominated by at least one solution in F1. As
long as such dominating solution is found, we do not compare the dominance relationship with the
remaining solutions in F1 any longer and turn to investigate the solutions in F2, so on and so forth.
Note that if xc does not belong to any existing NDL Fi, where i ∈ {1, · · · , l}, xc is added to a newly
created NDL Fl+1.

3.1.2 Is there any solution that needs to change its NDL

According to the discussions in Section 3.1.1, for solutions in Fi, where i ∈ {1, · · · , l}, only those
dominated by the newly added solutions need to change their NDLs.

3.1.3 What is the new NDL such solution belongs to

Assume that xI is going to be added to Fi, where i ∈ {1, · · · , l}, and xI dominates one or more solutions
in Fi. These dominated solutions should be moved to another NDL after adding xI. According to the
property of NDL, in case j < i and i, j ∈ {1, · · · , l}, none of these dominated solutions can dominate
any solution in Fj , and each of them should be at least dominated by one solution in Fj . Therefore,
these dominated solutions cannot be moved to a NDL prior to Fi. Moreover, each of these dominated
solutions either be non-dominated or dominates a solution in Fi+1. In this case, it contradicts the
property of NDL if those dominated solutions are moved to Fk, where k > i+1. In summary, solutions
in Fi and are dominated by xI can only be moved from Fi to Fi+1.

Algorithm 2: ENLU method after reproduction

Input:

• NDL structure F = {F1, · · · , Fl}

• offspring solution xc

Output: updated NDL structure F
1 T ← {xc};
2 for i← 1 to l do
3 if CASE I then
4 continue;
5 else if CASE II then
6 Fi ← Fi

⋃
T ;

7 break;

8 else if CASE III then
9 Move all solutions in Fk, k ∈ {i, · · · , l}, to Fk+1;

10 Fi ← T ;
11 break;

12 else // CASE IV

13 Fi ← Fi
⋃
T ;

14 T ← solutions in Fi ∧ dominated by those in T ;

15 if i = l + 1 then
16 Fl+1 ← T ;

17 return F

Based on the above discussions, Algorithm 2 presents the pseudo-code of the ENLU method after
reproduction, i.e., when xc comes in. Note that the NDL structure of the parent population P is
already known a priori. This is guaranteed in the steady-state EMO, e.g., steady-state NSGA-II,
since NDS is performed at the initialization procedure and the NDL structure is updated as long as xc

comes in. To start with, the algorithm first checks whether there exists a solution in F1 that dominates

6

xc. As long as we find such solution, we start comparing xc with solutions in F2, so on and so forth.
Generally speaking, we might meet one of the following four cases when checking with the solutions
in Fi (1 ≤ i ≤ l).

1. CASE I: the newly added solutions1 are dominated by at least one solution in Fi. According
to the discussion in Section 3.1.3, CASE I only happens to xc. In particular, if 1 ≤ i < l, we
stop comparing with the remaining solutions in Fi, and move to check with solutions in Fi+1.
Otherwise, xc is added to a newly created NDL Fl+1.

2. CASE II: the newly added solutions are non-dominated with all solutions in Fi. In this case, the
newly added solutions will be directly added to Fi, and no further comparison is required for
the remaining NDLs. Fig. 4 presents a simple example to illustrate this case. Let us start the
comparison from F1. Since xc is dominated by x1, it does not belong to F1. Then, we move to
check with solutions in F2. Since xc is non-dominated with all solutions in F2, it is added to F2

and we stop comparing with the remaining solutions in F3.

addF1

F2

F3

f1

f2

x4

x3

x2

x1

x6

x7

x5

x8

x9 F1

F2

F3

f1

f2

x3

x2

x1

x4

x6

x5

x7

x8

x9

xc

Figure 4: An example of CASE II in ENLU method after reproduction.

3. CASE III: the newly added solutions dominate all solutions in Fi. In this case, all solutions in
Fk, where k ∈ {i, · · · , l}, are moved to Fk+1, and the newly added solutions are added to Fi.
Fig. 5 presents a simple example to illustrate this case. Let us start the comparison from F1.
Since xc is dominated by x1, it does not belong to F1. Then, we move to check with solutions
in F2. Since xc dominates all solutions in F2, it is added to F2. In the meanwhile, solutions
originally in F2 and F3 are, respectively, moved to F3 and F4.

4. CASE IV: the newly added solutions dominate one or more solutions in Fi. In this case, the newly
added solutions, denoted as T in Algorithm 2, are added to Fi. In the meanwhile, the solutions
originally in Fi and dominated by one or more solutions in T are used to form the new T for the
next NDL. Fig. 6 presents a simple example to illustrate this case. Let us start the comparison
from F1. Since xc is dominated by x2, it does not belong to F1. Then xc is compared with
solutions in F2. Since xc dominates x5 and x6 and is non-dominated with others, it is added to
F2 while x5 and x6 need to move to F3. In F3, since x5 and x6 dominate x8 and x9, x5 and x6

are added to F3. At the same time, x8 and x9 are added to a newly created NDL F4.

3.2 ENLU Method After Environmental Selection

According to the discussions in Section 2, we have to figure out the following two issues.

3.2.1 Is there any solution that needs to change its NDL

Let us assume that xE, which belongs to Fi, where i ∈ {1, · · · , l}, is eliminated by the environmental
selection. Note that solutions in Fj , where 1 ≤ j ≤ i, either are non-dominated with xE or dominate it.

1The newly added solution is xc at the outset, and will be the solutions that need to change their NDLs thereafter.

7

add

f1

f2

F1

F2

F3

f1

f2

x4

x3

x2

x1

x6

x7

x5

x8

x9

x4

x3

x2

x1
x6

x7

x5

x8

x9

F4

F1
F2

F3

xc

Figure 5: An example of CASE III in ENLU method after reproduction.

Thus, the elimination of xE cannot influence the NDL structure prior to Fi. Only solutions dominated
by xE might change their NDLs.

3.2.2 What is the new NDL such solution belongs to

Similar to the discussions in Section 3.1, a solution can only move forward one NDL. Let us explain
this by induction. Suppose that ∃x∗ ∈ Fi+1 and xE � x∗. ∃x′ ∈ Fj , where 1 ≤ j ≤ i − 1, and
x′ � xE. According to the transitivity property of the Pareto dominance, we have x′ � x∗. Therefore,
x∗ cannot be added to Fj . On the other hand, x∗ can be added to Fi if and only if @x′′ ∈ Fi that
x′′ � x∗.

Based on the above discussion, Algorithm 3 gives the pseudo-code of the ENLU method after
environmental selection. To start with, we locate the NDL Fi to which xE belongs (line 1 in Algo-
rithm 3). Then, we identify the solutions in Fi+1 and are dominated by xE. If there does not exist
such solutions, the ENLU method terminates and no solution needs to change its NDL. Otherwise, we
store the dominated solutions into a temporary archive S (line 3 in Algorithm 3). For each solution
x in S, we compare the dominance relationship with the survived solutions in Fi. The solutions in S
and dominated by the survived solutions in Fi are stored into a temporary archive D (line 5 in Algo-
rithm 3), whereas those are non-dominated with the survived solutions in Fi are added into this NDL
(line 9 in Algorithm 3). If none of the solution in S can be added into Fi, we stop considering solutions
after Fi+1 (line 6 to line 8 in Algorithm 3). Note that if xE ∈ Fl, no more operation is required. Fig. 7
presents a simple example to illustrate the ENLU method after environmental selection. Suppose that
x5 is eliminated from the population. Since all solutions in F3 are dominated by x5, all of them have
the chance to be added to F2. We compare the dominance relationship between solutions in F3 with
x4 and x6, and we find that x7 is dominated by x4. Therefore, only x8 and x9 can be added to F2.
Afterwards, we find that x10 ∈ F4 is dominated by x5. Thus, we need to consider the movement of
x10 from F4 to F3. Since x10 is non-dominated with x7, it is added to F3. At last, the ENLU method
terminates.

4 Computational Complexity Analysis

In this section, we analyze the computational complexity of the proposed ENLU method. As discussed
in Section 3, the ENLU method is performed twice at each iteration of a steady-state EMO algorithm
(line 3 to line 5 in Algorithm 1). In the following paragraphs, we consider the computational complexity

8

add

F1

F2

F3

f1

f2

x4

x3

x2

x1

x6

x7

x5

x8

x9 F1

F2

F3

x3

x2

x1

x4

x6

x5

x7

x8

x9

F4

f1

f2

xc

Figure 6: An example of CASE IV in ENLU method after reproduction.

in two different scenarios, i.e., the ENLU method after reproduction and environmental selection,
respectively.

4.1 Best-case Complexity of ENLU Method

Let us first consider the scenario of the ENLU method after reproduction. The best-case happens when
F1 only contains a single solution and it is non-dominated with the newly generated offspring solution
xc. In this case, the ENLU method, shown in Algorithm 2, only requires one dominance comparison,
i.e., m objective function comparisons. Thus, the best case complexity of the ENLU method after
reproduction is O(m). As for the scenario of the ENLU method after environmental selection, the
best-case happens when the elimination takes place at Fl. In this case, since this eliminated solution
does not dominate any other in the population, the ENLU method, shown in Algorithm 3, does not
require any further dominance comparison. Note that in the steady-state NSGA-II, this best-case
always happens since its environmental selection deletes the worst solution from Fl as shown in line
5 of Algorithm 1. Nevertheless, there are some other steady-state EMO algorithm, e.g., our recently
proposed one for many-objective optimization [15] in which the elimination of an inferior solution
might not always happen in Fl. In summary, the best-case complexity of ENLU method is O(m).

4.2 Worst-case Complexity of ENLU Method

The analysis of worst-case complexity is much more complicated. Let us still first consider the scenario
of the ENLU method after reproduction.

Lemma 1. Given a population having N solutions, which form l (l ≥ 1) NDLs, i.e., F1, · · · , Fl. Each
Fi contains ϕi (1 ≤ ϕi ≤ N) solutions, where i ∈ {1, · · · , l}, and

∑l
i=1 ϕi = N . The largest number

of compairions (NoC) is calculated as:

NoC = ϕ1 +

k∑
i=2

(ϕi−1 − 1)ϕi (2)

where k = l in case there does not exist any NDL, before Fl, in which the newly added solutions from
the previous NDL dominate or are non-dominated with all solutions; otherwise k is the index of the
first such NDL.

The proof of 1 can be found in Appendix A. It is the foundation to figure out the NDL structure
that maximizes the NoC under the given N .

9

eliminate

f1

f2

x3

x2

x1

F1

F4

F2

F3

x4

x6

x7

x5

x8

x9

x10

x3

x2

x1

x4

x6

F1

F2

F3

x10

x7

x8

x9

f1

f2

Figure 7: An example of ENLU method after environmental selection

Lemma 2. When l = 2, the NDL structure ϕ1 = [N2] + 1 and ϕ2 = N − [N2] − 1 maximizes NoC,
where [∗] can either be a rounded up or rounded down operation in case N

2 is not an integer.

The proof of 2 can be found in Appendix B. Unfortunately, it is far from trivial to directly derive
the NDL structure that maximizes the NoC when l > 2. In order to find some patterns, for a given N
and l, we perform an exhaustive search to find the combinations of ϕi, where i ∈ {1, · · · , l}, that give
us the largest NoC. Due to the huge volume of different combinations, which grows exponentially
with the increase of N and l, here we set N = 30 as a constant and l varying from 3 to 6 in our
experiment for illustrative purpose. Specifically, we have the following results:

• When l = 3, there is one NDL structure that gives the largest NoC:
ϕ1 ϕ2 ϕ3

15 14 1

• When l = 4, there are two different NDL structures that give the largestNoC:

ϕ1 ϕ2 ϕ3 ϕ4

14 14 1 1

15 13 1 1

• When l = 5, there is one NDL structures that gives the largest NoC:
ϕ1 ϕ2 ϕ3 ϕ4 ϕ5

14 13 1 1 1

• When l = 6, there are two different NDL structures that give the largestNoC:

ϕ1 ϕ2 ϕ3 ϕ4 ϕ5 ϕ6

13 13 1 1 1 1

14 12 1 1 1 1

Accordingly, we calculate the corresponding largest NoC achieved by different number of NDLs
as follows:

l = 2 l = 3 l = 4 l = 5 l = 6

226 224 209 195 181

Based on the above results, we have the following two observations:

1. For a given N and l, most solutions should be located in the first two NDLs in order to maximize
NoC.

2. For a given N , the largest NoC decreases with the increase of l.

10

Algorithm 3: ENLU after environmental selection

Input:

• NDL structure F = {F1, F2, · · · , Fl}

• eliminated solution xE

Output: updated NDL structure F
1 Locate the NDL Fi to which xE belongs;
2 while i < l do
3 S ← solutions in Fi+1 ∧ dominated by xE ;
4 if S 6= ∅ then
5 D ← solutions in S ∧ dominated by the survived solutions in Fi;
6 if D = S then
7 break;

8 Fi ← Fi
⋃
S\D;

9 i++;

10 return F

Lemma 3. When l ≥ 3, the NDL structure ϕ1 = [N−l+3
2], ϕ2 = N−[N−l+3

2]−1, ϕi = 1, i ∈ {3, · · · , l}
maximizes NoC, where [∗] can either be a rounded up or rounded down operation in case N−l+3

2 is
not an integer.

The proof of 3 can be found in Appendix C. This lemma provides the theoretical support to the
first observation in the above exhaustive search, and it also gives the corresponding NDL structure
maximizing the NoC in a general case.

Theorem 1. For a given N , l = 2 maximizes NoC.

The proof of Theorem 1 can be found Appendix D. This theorem gives the theoretical support
to the second observation in the above exhaustive search. Based on 2 and Theorem 1, we find that
the worst-case complexity of our proposed ENLU method after reproduction is O(mN2). Obviously,
the computational complexity of the ENLU method after environmental selection cannot be larger
than O(mN2), even if an exhaustive search is performed. Therefore, we do not discuss the complexity
therein. In summary, the worst-case complexity of ENLU method is O(mN2).

5 Emperimental Results

The empirical studies in this paper consist of two parts. In the first part, we compare the performance
of the ENLU method with five popular NDS algorithms on two different synthetic data sets. In par-
ticular, we employ the number of objective comparisons as the indicator to evaluate the performance
of different algorithms2. In order to mimic the reproduction, a point, randomly sampled from [0, 1]m,
is added to a data set before performing the ENLU method after reproduction; while for the environ-
mental selection, a randomly chosen point is eliminated from the data set before performing the ENLU
method after environmental selection. In addition, each NDS algorithm is launched 21 independent
times for each data set. The median indicator values are used for comparisons. In the second part, we
have implemented six steady-state NSGA-II variants by using the ENLU method and the other five
NDS algorithms, respectively. The performance of different variants is studied on a variety of DTLZ
problems with various number of objectives. In the following paragraphs, we at first give some brief
descriptions on the five NDS algorithms and the implementations of two different synthetic data sets.
Afterwards, we will discuss the experimental results in detail.

2Since different algorithms are implemented in different programming languages, we do not use CPU time cost in
comparisons.

11

5.1 Non-dominated Sorting Algorithms

5.1.1 Fast Non-dominated Sorting (FNDS) [2]

Each solution is compared with other solutions in the population, and solutions that are non-dominated
with others are assigned to F1. Then, solutions in F1 are temporarily removed from the population,
and the remaining non-dominated solutions are assigned to F2, so on and so forth. It is worth noting
that, in order to reduce some unnecessary comparisons, the comparison between any two solutions
only performs once.

5.1.2 Deductive Sort (DS) [5]

In order to reduce unnecessary comparisons, DS has two major strategies: one is to ignore the com-
parisons of dominated solutions to the others; the other is to infer the dominance relationship from
the previous comparison records.

5.1.3 Corner Sort (CS) [6]

Its basic idea is to use the non-dominated solutions to ignore their dominated solutions. It has two
major strategies to reduce unnecessary comparisons: one is to ignore the dominated solutions as in
DS; the other is to identify the non-dominated solutions that are unique for CS.

5.1.4 Efficient Non-dominated Sort (ENS) [20]

In ENS, the comparison between any two solutions is at most once, thereby avoiding many unnecessary
comparisons. It has two implementations: one uses a sequential search strategy (ENS-SS) and the
other uses a binary search strategy (ENS-BS) to identify the NDL to which a solution belongs.

Our proposed ENLU method and FNDS are implemented in JAVA under the jMetal frame-
work [21], an open source EMO algorithm package. The source codes of the other four NDS algorithms
are obtained from their corresponding authors. Specifically, DS and CS are implemented in C++;
ENS-BS and ENS-SS are implemented in MATLAB.

5.2 Synthetic Data Sets

5.2.1 Cloud Data Set

This data set contains solutions whose objective values are randomly sampled from a uniform dis-
tribution within the range [0, 1]. This randomly sampled population is unstructured, and it consists
of solutions arranged in a random order. In addition, the randomly sampled population contains a
varying number of NDLs, and each solution dominates an unpredictable number of solutions in the
population. This data set tends to mimic the population structure in the early stages of EMO, and it
investigates the general ability to identify the NDL structure in a mixed population.

5.2.2 Fixed Fronts Data Set

This data set contains a population where solutions are divided into a controllable number of NDLs.
Each NDL has almost the same size, and solutions in each NDL are distributed on a line or a hyper-
plane. More detailed descriptions on the construction of this kind of data sets can be found in [5].
The fixed front data set tends to investigate the change of the computational cost with the variation
of the number of NDLs. Note that the number of NDLs diminishes with the progress of evolution.
This issue will be further discussed in Section 5.5.

5.3 Experiments on Cloud Data Set

In this section, we test the performance of the ENLU method with the other five NDS algorithms on
cloud data sets in two-, five-, ten- and fifteen-objective cases, respectively. For each case, the size of

12

a data set ranges from 100 to 5,000 with an increment of 100. That is to say, for a given number of
objectives, there are 50 randomly generated populations in total for the empirical studies.

Fig. 8 plots the variations of the number of objective comparisons for different data set sizes. Note
that the Y-axes of Fig. 8 are labeled in log-scale, since FNDS costs much more objective comparisons
than others. It is worth noting that the number of objective comparisons of FNDS increases with the
growth of the data set size, whereas its trajectories have little change for different number of objectives.
This can be explained as the computational cost of FNDS largely depends on the population size. Since
DS ignores some dominated solutions in sorting, it requires fewer comparisons than FNDS. As discussed
in [7], in ENS-SS and ENS-BS, only solutions, which have already been assigned a NDL, are used to
compare with the other unassigned ones. Empirical results in Fig. 8 demonstrate that both ENS-SS
and ENS-BS indeed reduce many unnecessary comparisons. Especially for the two-objective case,
ENS-BS requires much fewer objective comparisons than the other four NDS algorithms. However,
in five- and ten-objective cases, ENS-SS performs slightly better than ENS-BS. In addition, we notice
that the number of objective comparisons of DS, ENS-SS and ENS-BS increases with the growth of
dimensionality. Even worse, as shown in Fig. 8, the performance of these three algorithms almost
degenerate to FNDS in the ten- and fifteen-objective cases. As for CS, it takes the advantage of the
corner solution, which has the best value in a particular objective function, to reduce unnecessary
comparisons. In contrast to the m(N − 1) objective comparisons for identifying a non-dominated
solution, the identification of a corner solution only requiresN−1 objective comparisons. This property
makes CS very efficient for the many-objective scenario. From the results shown in Fig. 8, we find that
the performance of CS is only better than FNDS in the two-objective case, whereas it performs better
than the other four NDS algorithms when the number of objectives becomes large. Nevertheless,
the ENLU method shows a constantly best performance in all comparisons. Its superiority becomes
even more significant with the increase of the number of objectives. It is interesting to note that
the trajectories of the ENLU method fluctuate significantly in two- and five-objective cases, and
become stable later on. As discussed in Section 4, the computational cost of the ENLU method
largely depends on the population distribution. In the low-dimensional case, the NDL structure is
rather chaotic, thereby adding a new solution might largely shake the original NDL structure. On the
other hand, the number of NDLs diminishes with the growth of dimensionality, which makes the NDL
structure become relatively simpler. Thereby, the number of objective comparisons cost by the ENLU
method becomes stable in the high-dimensional cases. The issue of NDL structure will be further
explored in Section 5.5.

100 1,000 2,000 3,000 4,000 5,000

102

103

104

105

106

107

108

Number of Solutions

N
u
m
b
er

of
O
b
je
ct
iv
e
C
om

p
ar
is
on

s

(a) 2-objective case

100 1,000 2,000 3,000 4,000 5,000

103

104

105

106

107

108

Number of Solutions

N
u
m
b
er

of
O
b
je
ct
iv
e
C
om

p
ar
is
on

s

(b) 5-objective case

100 1,000 2,000 3,000 4,000 5,000

103

104

105

106

107

108

Number of Solutions

N
u
m
b
er

of
O
b
je
ct
iv
e
C
om

p
ar
is
on

s

(c) 10-objective case

100 1,000 2,000 3,000 4,000 5,000
103

104

105

106

107

108

109

Number of Solutions

N
u
m
b
er

of
O
b
je
ct
iv
e
C
om

p
ar
is
on

s

(d) 15-objective case

FNDS DS CS ENS-SS ENS-BS ENLU

Figure 8: Median number of objective comparisons of ENLU method and the other five NDS algorithms
for cloud data sets.

In the above experiments, we investigate the performance variation for different data set sizes for a
particular dimensionality. People may also interest in the performance variation on a data set with a
fixed size in various dimensionalities. To this end, we conduct another set of experiments on some cloud
data sets with a fixed size (100, 1,000, 3,000 and 5,000 respectively), where the number of objectives
varies from 2 to 20 for each case. Fig. 9 presents the performance comparisons of ENLU method and
the other five NDS algorithms. From these experimental results, we have observed a similar trend
as in Fig. 8: the performance of DS, ENS-SS and ENS-BS gradually degenerate to FNDS with the

13

2 4 6 8 10 12 14 16 18 20
102

103

104

105

Number of ObjectivesN
u
m
b
er

of
O
b
je
ct
iv
e
C
om

p
ar
is
on

s

(a) N = 100

2 4 6 8 10 12 14 16 18 20
103

104

105

106

107

Number of ObjectivesN
u
m
b
er

of
O
b
je
ct
iv
e
C
om

p
ar
is
on

s

(b) N = 1, 000

2 4 6 8 10 12 14 16 18 20
103

104

105

106

107

108

Number of ObjectivesN
u
m
b
er

of
O
b
je
ct
iv
e
C
om

p
ar
is
on

s

(c) N = 3, 000

2 4 6 8 10 12 14 16 18 20

104

105

106

107

108

109

Number of ObjectivesN
u
m
b
er

of
O
b
je
ct
iv
e
C
om

p
ar
is
on

s

(d) N = 5, 000

FNDS DS CS ENS-SS ENS-BS ENLU

Figure 9: Median number of objective comparisons of ENLU method and the other five NDS algorithms
for cloud data sets with fixed sizes.

growth of dimensionality. In particular, the number of objective comparisons cost by DS becomes the
same as FNDS in case more than fifteen objectives have been considered. This can be explained as
the cloud data sets with more than fifteen objectives usually have only one NDL, thus no dominated
solutions can be ignored by the DS. As for CS, the number of objective comparisons slightly increases
with the growth of dimensionality. And similar to the observations in Fig. 8, CS costs more objective
comparisons than DS, ENS-SS and ENS-BS when the number of objectives is small. However, with
the increase of the number of objectives, CS shows constantly better performance than the other
NDS algorithms. Nevertheless, as expected, our proposed ENLU method is the most efficient method,
which costs much less number of objective comparisons, comparing to all other NDS algorithms.

5.4 Experiments on Fixed Fronts Data Sets

2 10 20 30 40 50 60 70
102

103

104

105

106

107

Number of NDLsN
u
m
b
er

of
O
b
je
ct
iv
e
C
om

p
ar
is
on

s

(a) 2-objective case

2 10 20 30 40 50 60 70

103

104

105

106

107

Number of NDLsN
u
m
b
er

of
O
b
je
ct
iv
e
C
om

p
ar
is
on

s

(b) 5-objective case

2 10 20 30 40 50 60 70

103

104

105

106

107

108

Number of NDLsN
u
m
b
er

of
O
b
je
ct
iv
e
C
om

p
ar
is
on

s

(c) 10-objective case

2 10 20 30 40 50 60 70

103

104

105

106

107

108

Number of NDLsN
u
m
b
er

of
O
b
je
ct
iv
e
C
om

p
ar
is
on

s

(d) 15-objective case

FNDS DS CS ENS-SS ENS-BS ENLU

Figure 10: Median number of objective comparisons of ENLU method and the other five NDS algo-
rithms for fixed fronts data sets with controllable number of NDLs.

After the experiments on cloud data sets, this section investigates the performance of ENLU
method and the other five NDS algorithms on data sets with a controllable number of NDLs. In
particular, we consider two factors that might influence of the computational cost, i.e., the number of
NDLs and the number of objectives.

The first experiment investigates the performance of ENLU method and the other five NDS algo-
rithms on the fixed fronts data sets with two, five, ten and fifteen objectives. The population size is
fixed to 2,000, and the number of NDLs varies from 2 to 70 with an increment of one, resulting in 69
populations in total for each test case. Fig. 10 presents the comparison results of the ENLU method
with FNDS, DS, CS, ENS-SS and ENS-BS, regarding the number of objective comparisons. Similar
to the observations for the cloud data sets, as shown in Fig. 10, FNDS costs the largest number of
objective comparisons among all six algorithms. In addition, it is also interesting to note that the tra-
jectories of FNDS keep stable over different number of NDLs. This can be explained as the number of

14

2 4 6 8 10 12 14 16 18 20
102

103

104

105

106

107

108

109

Number of ObjectivesN
u
m
b
er

of
O
b
je
ct
iv
e
C
om

p
ar
is
on

s

(a) l = 1

2 4 6 8 10 12 14 16 18 20
103

104

105

106

107

108

109

Number of ObjectivesN
u
m
b
er

of
O
b
je
ct
iv
e
C
om

p
ar
is
on

s

(b) l = 10

2 4 6 8 10 12 14 16 18 20
103

104

105

106

107

108

109

Number of ObjectivesN
u
m
b
er

of
O
b
je
ct
iv
e
C
om

p
ar
is
on

s

(c) l = 30

2 4 6 8 10 12 14 16 18 20
103

104

105

106

107

108

109

Number of ObjectivesN
u
m
b
er

of
O
b
je
ct
iv
e
C
om

p
ar
is
on

s

(d) l = 50

FNDS DS CS ENS-SS ENS-BS ENLU

Figure 11: Median number of objective comparisons of ENLU method and the other five NDS algo-
rithms for fixed fronts data sets with fixed number of NDLs.

objective comparisons incurred by FNDS largely depends on the number of objectives and population
size. As discussed in [5], this quantity is m× (N2−N), regardless of the number of NDLs. In contrast
to FNDS, a significant decrease in the number of objective comparisons has been witnessed by the
other five algorithms. Generally speaking, their trajectories share a common trend where the number
of objective comparisons decreases with the increase of the number of NDLs. More specifically, the
performance of ENS-SS is similar to ENS-BS when the number of NDLs is relatively small, whereas
its performance deteriorates with the increase of the number of NDLs. Even worse, ENS-SS costs
more objective comparisons than DS when the number of NDLs is larger than 40. As for CS, it costs
less number of objective comparisons when the number of objectives becomes large. All in all, our
proposed ENLU method is the best algorithm in most test cases.

In the second experiment, we test the performance of the ENLU method and the other five NDS
algorithms on data sets with 1, 10, 20 and 50 NDLs, respectively, for different number of objectives.
Here, the population size is constantly set as 5,000, and the number of objectives varies from 2 to 20
with an increment of one. From the empirical results shown in Fig. 11, we find that our proposed
ENLU method is the best candidate in most test cases. Although ENS-SS and ENS-BS cost fewer
objective comparisons in 2-objective case, their trajectories surge up towards a high level later on. It
is worth noting that the performance of DS is almost the same as FNDS when there is only one NDL.
This is because DS cannot ignore any solution when all solutions are non-dominated with each other.
As for CS, its required number of objective comparisons keep stable all the time.

5.5 Further Investigations of NDL Structure

In this section, we investigate some interesting properties of the NDL structure. As discussed in [22],
for a randomly generated population, the number of NDLs diminishes with the increase of the number
of objectives. To validate this assertion, we conduct an experiment on several randomly generated
populations. The population size is set as N = 200, N = 800 and N = 2, 000, respectively. Each
point in a population is randomly sampled from a uniform distribution within the range

∏m
i=1[0, 1].

The number of objectives varies from 2 to 15 with an increment of one. As shown in Fig. 12, all
three trajectories drop rapidly with the growth of dimensionality. In addition, we also notice that the
deterioration of the number of NDLs is more significant in case the population size is small.

In real optimization scenarios, decision maker might be more interested in the amount of solutions
in the first few NDLs. Here, we conduct another experiment to investigate the variation of the amount
of solutions in the first five NDLs for different number of objectives. From the results shown in Fig. 13,
we find that the trajectories for different population sizes share a similar trend. Specifically, the amount
of solutions in the first NDL steadily increases with the growth of dimensionality, while for the other
four NDLs, the amount of solutions slightly increases at first but rapidly decreases later on. Note that
this observation conforms to the previous experiment where the number of NDLs decreases with the
growth of dimensionality.

The experiments on a randomly generated population demonstrate some interesting properties of

15

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

15

30

45

60

75

90

Number of Objectives

N
u
m
b
er

of
N
D
L
s

N = 200
N = 800
N = 2000

Figure 12: Number of NDLs formed in a random population, with population size 200, 800 and 2,000,
respectively, for different number of objectives.

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

40

80

120

160

200

Number of Objectives

N
u
m
b
er

of
P
oi
n
ts

(a) N = 200

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

160

320

480

640

800

Number of Objectives

N
u
m
b
er

of
P
oi
n
ts

(b) N = 800

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

400

800

1,200

1,600

2,000

Number of Objectives

N
u
m
b
er

of
P
oi
n
ts

(c) N = 2, 000

Level 1 Level 2 Level 3 Level 4 Level 5

Figure 13: Number of points in the first five NDLs for different number of objectives.

16

0
0.2

0.4
0.6

0.8
1

1.2 0
0.2

0.4
0.6

0.8
1

1.20

0.2

0.4

0.6

0.8

1

1.2

0
0.2

0.4
0.6

0.8
1

1.2

0
0.2

0.4
0.6

0.8
1

1.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 14: 800 randomly sampled points within a band region for a three-dimensional case.

the NDL structure in the early stage of evolution. It is also interesting to investigate the scenarios in the
late stage of evolution, where the population almost approaches the Pareto-optimal front. To this end,
we design another synthetic data set where each sample point is within a band region right upon the
Pareto-optimal front of DTLZ2 [19]. Fig. 14 presents a simple example of 800 such randomly sampled
points in a three-dimensional space. More specifically, the mathematical formulation of DTLZ2 is as
follows:

f1(x) = (1 + g(xm)) cos(
x1π

2
) · · · cos(

xm−2π

2
) cos(

xm−1π

2
)

f2(x) = (1 + g(xm)) cos(
x1π

2
) · · · cos(

xm−2π

2
) sin(

xm−1π

2
)

f3(x) = (1 + g(xm)) cos(
x1π

2
) · · · sin(

xm−2π

2
)

...

fm(x) = (1 + g(xm)) sin(
x1π

2
)

where x ∈ Ω =
∏n

i=1[0, 1] and g(xm) =
∑

xi∈xm
(xi − 0.5)2. To obtain a sample point as shown

in Fig. 14, we set xi, where i ∈ {1, 2, · · · ,m − 1}, be sampled from the range [0, 1] and xj , where
j ∈ {m,m + 1, · · · , n}, be sampled from the range [0.5, 0.9]. Similar to the previous experiments on
the randomly generated population, we also investigate two aspects, i.e., the variation of the number
of NDLs in different dimensionality and the variation of the amount of solutions in the first five NDLs.
From the experimental results shown in Fig. 15 and Fig. 16, we find the trajectories share a similar
trend as those in Fig. 12 and Fig. 13. However, it is also worth noting that the number of NDLs
formed in this synthetic data set is much fewer than that in the randomly generated population. This
observation implies that the number of NDL structure becomes relatively simpler when the population
almost converges to the Pareto-optimal front.

5.6 Performance Investigations in Steady-State NSGA-II

Other than the empirical studies on synthetic data sets, it is also interesting to see the efficiency
improvement when the ENLU method is embedded in a steady-state EMO algorithm. To this end,
we develop six steady-state NSGA-II variants. In particular, the pseudo-code of the variant that uses
the ENLU method to update the NDL structure is given in Algorithm 4, while the other variants are
respectively using FNDS, DS, ENS-SS, ENS-BS and CS methods to replace line 4 of Algorithm 1.
DTLZ1 to DTLZ4 [19], with three, five, eight, ten, and fifteen objectives, are chosen as the benchmark
problems. All steady-state NSGA-II variants use the simulated binary crossover [23] and polynomial

17

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

5

10

15

20

25

Number of Objectives

N
u
m
b
er

of
N
D
L
s

N = 200
N = 800
N = 2000

Figure 15: Number of NDLs formed in the synthetic data sets with population size 200, 800 and 2,000,
respectively, for different number of objectives.

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

40

80

120

160

200

Number of Objectives

N
u
m
b
er

of
P
oi
n
ts

(a) N = 200

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

160

320

480

640

800

Number of Objectives

N
u
m
b
er

of
P
oi
n
ts

(b) N = 800

2 3 4 5 6 7 8 9 10 11 12 13 14 15
0

400

800

1,200

1,600

2,000

Number of Objectives

N
u
m
b
er

of
P
oi
n
ts

(c) N = 2, 000

Level 1 Level 2 Level 3 Level 4 Level 5

Figure 16: Number of points in the first five NDLs for different number of objectives.

18

Algorithm 4: Steady-state NSGA-II using ENLU method

Input: algorithm parameters
Output: population P

1 Initialize a population P ← {x1, · · · ,xN};
2 Use NDS to divide P into several NDLs, i.e., F1, · · · , Fl;
3 while termination criterion is not met do
4 Mating selection and generate an offspring xc;
5 Use ENLU method to update the NDL structure of P ′ ← P

⋃
{xc};

6 Identify the worst solution x′ and set P ← P ′ \ {x′};
7 Use ENLU method to update the NDL structure of P ;

8 return P ;

mutation [24] for offspring generation. The crossover probability is pc = 1.0 and its distribution index
is ηc = 30. The mutation probability is pm = 1/n and its distribution index is ηm = 20. According to
our recent studies on many-objective optimization [15], the settings of the number of generations and
population size for different number of objectives are given in Table 1.

Table 1: Number of generations for different test instances.

Test Instance m = 3 m = 5 m = 8 m = 10 m = 15

DTLZ1 400 600 750 1,000 1,500
DTLZ2 250 350 500 750 1,000
DTLZ3 1,000 1,000 1,000 1,500 2,000
DTLZ4 600 1,000 1,250 2,000 3,000

Population Size 92 212 156 276 136

Each steady-state NSGA-II variant is launched 21 independent times, and Fig. 17 presents the
median number of objective comparisons cost by these six variants on different test instances. From
the experimental results, we can clearly see that the steady-state NSGA-II with the ENLU method
costs much fewer (more than 10 times) objective comparisons than the other five variants. Although
FNDS always costs more objective comparisons than the other NDS methods in synthetic data sets, it
is not the worst candidate when embedding in a steady-state NSGA-II in some cases. For instance, in
the three-objective case, the steady-state NSGA-II variants with DS and CS consume more objective
comparisons than the one using FNDS. It is interesting to note that the number of objective compar-
isons cost by ENS-SS and ENS-BS is almost the same in most cases. Furthermore, these two methods
have shown better performance than the other NDS methods in the three-objective case. But their
superiorities gradually vanish with the growth of dimensionality. In summary, our proposed ENLU
method not only shows the best performance in synthetic data sets, it is also a reliable and efficient
method to maintain NDL structure in a steady-state EMO algorithm.

1 2 3 4
106

107

108

109

Problem IndexN
u
m
b
er

of
O
b
je
ct
iv
e
C
om

p
ar
is
on

s

(a) 3-objective

1 2 3 4
107

108

109

1010

Problem IndexN
u
m
b
er

of
O
b
je
ct
iv
e
C
om

p
ar
is
on

s

(b) 5-objective

1 2 3 4

107

108

109

Problem IndexN
u
m
b
er

of
O
b
je
ct
iv
e
C
om

p
ar
is
on

s

(c) 8-objective

1 2 3 4

108

109

1010

Problem IndexN
u
m
b
er

of
O
b
je
ct
iv
e
C
om

p
ar
is
on

s

(d) 10-objective

1 2 3 4
107

108

109

1010

Problem IndexN
u
m
b
er

of
O
b
je
ct
iv
e
C
om

p
ar
is
on

s

(e) 15-objective

FNDS DS CS ENS-SS ENS-BS ENLU

Figure 17: Median number of objective comparisons of six steady-state NSGA-II variants by using
ENLU method and the other five NDS algorithms on DTLZ1 to DTLZ4. Note that problem index i
means DTLZi.

19

Algorithm 5: Canonical NSGA-II using ENLU method

Input: algorithm parameters
Output: population P

1 Initialize a population P ← {x1, · · · ,xN};
2 Use NDS to divide P into several NDLs, i.e., F1, · · · , Fl;
3 while termination criterion is not met do
4 Mating selection and generate the offspring population Q← {xc

1, · · · ,xc
N};

5 P ′ ← P ;
6 for i← 1 to N do
7 P ′ ← P ′

⋃
{xc

i};
8 Use ENLU method to update the NDL structure of P ′;

9 i← 0, P ← ∅;
10 while |P | < N do
11 i← i+ 1, P ← P

⋃
Fi;

12 while |P | > N do
13 Identify the worst solution x′ ∈ Fi and set P ← P \ {x′};
14 Use ENLU method to update the NDL structure of P ;

15 return P ;

5.7 Incorporation of ENLU into the Generational Scenario

Although the ENLU method is designed for the steady-state evolution model, an interesting question
is whether it is also useful for the generational scenario? To address this issue, we incorporate the
ENLU method into the canonical NSGA-II whose pseudo-code is given in Algorithm 5. Note that each
offspring is added to the parent population one by one, followed by the ENLU method for updating the
NDL structure of the newly hybrid population each time (line 6 to line 9 in Algorithm 5). Accordingly,
the truncation is also conducted in a sequential manner, coupled with the ENLU method to keep the
NDL structure up to date (line 14 to line 17 in Algorithm 5). Similar to Section 5.6, we develop five
other canonical NSGA-II variants, which use FNDS, DS, ENS-SS, ENS-BS and CS methods to perform
the NDS respectively. The experimental settings are exactly same as Section 5.6, and Fig. 18 presents
the median number of objective comparisons cost by these six variants on different test instances. From
the experimental results, we can see that the canonical NSGA-II with the ENLU method costs the
fewest number of objective comparisons than the other five variants in most cases. ENS-SS and ENS-
BS are the second best NDS methods on three- and five-objective scenarios; while their performance
deteriorate with the number of objectives. In contrast, the performance of CS and DS are not very
promising in the low-dimensional scenarios; while their superiorities become evident when the number
of objectives becomes large. Moreover, we notice that the superiority of our proposed ENLU method
is not as much as that in the steady-state scenario. All in all, it is very interesting to see that the
ENLU method is also useful for the generational evolution model. This suggests that maintaining the
NDL structure without resorting to the NDS is general to both steady-state and generational evolution
models.

6 Conclusions

NDS, which is a basic step in EMO, can be very time consuming when the number of objectives
and population size become large. To avoid unnecessary comparisons, instead of performing the NDS
from scratch, this paper presents an ENLU method, which takes advantages of the current population
to update the NDL structure, for the steady-state EMO. At each iteration, the ENLU method is
performed twice: one is after the reproduction, the other is after the environmental selection. By
leveraging the population structure, the ENLU method only updates the NDLs of a limited number of
solutions. Theoretically, the best-case complexity of the ENLU method is O(m), while the worst-case

20

1 2 3 4

107

107.5

Problem IndexN
u
m
b
er

of
O
b
je
ct
iv
e
C
om

p
ar
is
on

s

(a) 3-objective

1 2 3 4

108

109

Problem IndexN
u
m
b
er

of
O
b
je
ct
iv
e
C
om

p
ar
is
on

s
(b) 5-objective

1 2 3 4

108.5

109

Problem IndexN
u
m
b
er

of
O
b
je
ct
iv
e
C
om

p
ar
is
on

s

(c) 8-objective

1 2 3 4
108.8

109

109.2

109.4

Problem IndexN
u
m
b
er

of
O
b
je
ct
iv
e
C
om

p
ar
is
on

s

(d) 10-objective

1 2 3 4

108.6

108.8

109

109.2

Problem IndexN
u
m
b
er

of
O
b
je
ct
iv
e
C
om

p
ar
is
on

s

(e) 15-objective

FNDS DS CS ENS-SS ENS-BS ENLU

Figure 18: Median number of objective comparisons of six NSGA-II variants by using ENLU method
and the other five NDS algorithms on DTLZ1 to DTLZ4. Note that problem index i means DTLZi.

complexity is O(mN2). Although the proposed ENLU method is very simple and straightforward,
extensive experiments have shown that it avoids a significant amount of unnecessary comparisons, not
only in the synthetic data sets, but also in some real optimization scenarios. Furthermore, it is also
very interesting to see that the ENLU method can also be useful for the generational evolution model.
In future, we believe that heuristics (e.g., taking advantage of previous comparisons as done in [5]) and
advanced data structures (e.g., K-d tree [25]) are worth being applied to the ENLU method to further
improve its computational efficiency. Moreover, it is also interesting to apply the ENLU method to
both steady-state and generational EMO algorithms in more real optimization scenarios [26–32].

References

[1] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-
Wesley, 1989.

[2] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist multiobjective genetic
algorithm: NSGA-II,” IEEE Transactions on Evolutionary Computation, vol. 6, no. 2, pp. 182–
197, Apr. 2002.

[3] H. T. Kung, F. Luccio, and F. P. Preparata, “On finding the maxima of a set of vectors,” Journal
of the ACM, vol. 22, no. 6, pp. 469–476, Oct. 1975.

[4] M. T. Jensen, “Reducing the run-time complexity of multiobjective EAs: The NSGA-II and other
algorithms,” IEEE Transactions on Evolutionary Computation, vol. 7, no. 5, pp. 503–515, 2003.

[5] K. McClymont and E. Keedwell, “Deductive sort and climbing sort: New methods for non-
dominated sorting,” Evolutionary Computation, vol. 20, no. 1, pp. 1–26, 2012.

[6] H. Wang and X. Yao, “Corner sort for pareto-based many-objective optimization,” IEEE Trans-
actions on Cybernetics, vol. 44, no. 1, pp. 92–102, 2014.

[7] X. Zhang, Y. Tian, R. Cheng, and Y. Jin, “An efficient approach to nondominated sorting
for evolutionary multiobjective optimization,” IEEE Transactions on Evolutionary Computation,
vol. 19, no. 2, pp. 201–213, Apr. 2015.

[8] J. J. Durillo, A. J. Nebro, F. Luna, and E. Alba, “On the effect of the steady-state selection scheme
in multi-objective genetic algorithms,” in EMO’09: Proc. of the 5th International Conference on
Evolutionary Multi-Criterion Optimization, 2009, pp. 183–197.

[9] Q. Zhang and H. Li, “MOEA/D: A multiobjective evolutionary algorithm based on decomposi-
tion,” IEEE Transactions on Evolutionary Computation, vol. 11, pp. 712–731, Dec. 2007.

[10] N. Beume, B. Naujoks, and M. Emmerich, “SMS-EMOA: Multiobjective selection based on dom-
inated hypervolume,” European Journal of Operational Research, vol. 181, no. 3, pp. 1653–1669,
2007.

21

[11] J. Bader and E. Zitzler, “HyPE: An algorithm for fast hypervolume-based many-objective opti-
mization,” Evolutionary Computation, vol. 19, no. 1, pp. 45–76, 2011.

[12] C. Igel, N. Hansen, and S. Roth, “Covariance matrix adaptation for multi-objective optimization,”
Evolutionary Computation, vol. 15, no. 1, pp. 1–28, 2007.

[13] K. Deb, M. Mohan, and S. Mishra, “Evaluating the ε-domination based multi-objective evolution-
ary algorithm for a quick computation of Pareto-optimal solutions,” Evolutionary Computation,
vol. 13, no. 4, pp. 501–525, 2005.

[14] K. Nag, T. Pal, and N. R. Pal, “ASMiGA: An archive-based steady-state micro genetic algorithm,”
IEEE Trans. Cybernetics, vol. 45, no. 1, pp. 40–52, 2015.

[15] K. Li, K. Deb, Q. Zhang, and S. Kwong, “An evolutionary many-objective optimization algo-
rithm based on dominance and decomposition,” IEEE Transactions on Evolutionary Computa-
tion, vol. 19, no. 5, pp. 694–716, 2015.

[16] A. J. Nebro and J. J. Durillo, “On the effect of applying a steady-state selection scheme in the
multi-objective genetic algorithm NSGA-II,” in Nature-Inspired Algorithms for Optimisation, ser.
Studies in Computational Intelligence. Springer, 2009, vol. 193, pp. 435–456.

[17] M. Buzdalov and V. Parfenov, “Various degrees of steadiness in NSGA-II and their influence on
the quality of results,” in GECCO’15: Proc. of the 2015 Genetic and Evolutionary Computation
Conference, 2015, pp. 749–750.

[18] M. Buzdalov, I. Yakupov, and A. Stankevich, “Fast implementation of the steady-state NSGA-II
algorithm for two dimensions based on incremental non-dominated sorting,” in GECCO’15: Proc.
of the 2015 Genetic and Evolutionary Computation Conference, 2015, pp. 647–654.

[19] K. Deb, L. Thiele, M. Laumanns, and E. Zitzler, “Scalable test problems for evolutionary multi-
objective optimization,” in Evolutionary Multiobjective Optimization, ser. Advanced Information
and Knowledge Processing, A. Abraham, L. Jain, and R. Goldberg, Eds. Springer London, 2005,
pp. 105–145.

[20] S.-Z. Zhao, P. N. Suganthan, and Q. Zhang, “Decomposition-based multiobjective evolutionary
algorithm with an ensemble of neighborhood sizes,” IEEE Transactions on Evolutionary Compu-
tation, vol. 16, no. 3, pp. 442–446, 2012.

[21] J. J. Durillo and A. J. Nebro, “jMetal: A java framework for multi-objective optimization,”
Advances in Engineering Software, vol. 42, pp. 760–771, 2011.

[22] H. Ishibuchi, N. Tsukamoto, and Y. Nojima, “Evolutionary many-objective optimization: A short
review,” in CEC’08: Proc. of the 2008 IEEE Congress on Evolutionary Computation, 2008, pp.
2419–2426.

[23] K. Deb and R. B. Agrawal, “Simulated binary crossover for continuous search space,” Complex
Systems, vol. 9, pp. 1–34, 1994.

[24] K. Deb and M. Goyal, “A combined genetic adaptive search (GeneAS) for engineering design,”
Computer Science and Informatics, vol. 26, pp. 30–45, 1996.

[25] J. L. Bentley, “Multidimensional binary search trees used for associative searching,” Communi-
cations of ACM, vol. 18, no. 9, pp. 509–517, Sep. 1975.

[26] R. Cheng, Y. Jin, K. Narukawa, and B. Sendhoff, “A multiobjective evolutionary algorithm using
gaussian process-based inverse modeling,” IEEE Trans. Evolutionary Computation, vol. 19, no. 6,
pp. 838–856, 2015.

[27] V. A. Shim, K. C. Tan, and H. Tang, “Adaptive memetic computing for evolutionary multiob-
jective optimization,” IEEE Trans. Cybernetics, vol. 45, no. 4, pp. 610–621, 2015.

22

[28] S. Jiang, J. Zhang, Y. Ong, A. N. Zhang, and P. S. Tan, “A simple and fast hypervolume
indicator-based multiobjective evolutionary algorithm,” IEEE Trans. Cybernetics, vol. 45, no. 10,
pp. 2202–2213, 2015.

[29] S. B. Gee, K. C. Tan, and C. Alippi, “Solving multiobjective optimization problems in unknown
dynamic environments: An inverse modeling approach,” IEEE Trans. Cybernetics, 2016, accepted
for publication.

[30] X. Cai, Z. Yang, Z. Fan, and Q. Zhang, “Decomposition-based-sorting and angle-based-selection
for evolutionary multiobjective and many-objective optimization,” IEEE Trans. Cybernetics,
2016, accepted for publication.

[31] W. Yuan, X. You, J. Xu, H. Leung, T. Zhang, and C. L. P. Chen, “Multiobjective optimization of
linear cooperative spectrum sensing: Pareto solutions and refinement,” IEEE Trans. Cybernetics,
vol. 46, no. 1, pp. 96–108, 2016.

[32] K. Nag and N. R. Pal, “A multiobjective genetic programming-based ensemble for simultaneous
feature selection and classification,” IEEE Trans. Cybernetics, vol. 46, no. 2, pp. 499–510, 2016.

23

	Introduction
	Motivations
	Efficient Non-domination Level Update Method
	ENLU Method After Reproduction
	Which NDL xc belongs to
	Is there any solution that needs to change its NDL
	What is the new NDL such solution belongs to

	ENLU Method After Environmental Selection
	Is there any solution that needs to change its NDL
	What is the new NDL such solution belongs to

	Computational Complexity Analysis
	Best-case Complexity of ENLU Method
	Worst-case Complexity of ENLU Method

	Emperimental Results
	Non-dominated Sorting Algorithms
	Fast Non-dominated Sorting (FNDS) NSGA-II
	Deductive Sort (DS) McClymontK12
	Corner Sort (CS) WangY14
	Efficient Non-dominated Sort (ENS) ENS

	Synthetic Data Sets
	Cloud Data Set
	Fixed Fronts Data Set

	Experiments on Cloud Data Set
	Experiments on Fixed Fronts Data Sets
	Further Investigations of NDL Structure
	Performance Investigations in Steady-State NSGA-II
	Incorporation of ENLU into the Generational Scenario

	Conclusions

