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Abstract

This paper analyzes the convergence properties of the 
genetic algorithm based on space mating with 
mutation, crossover and proportional reproduction 
applied to static optimization on problems. It is proved 
by means of homogeneous finite Markov chain analysis 
that genetic algorithm based on space mating will 
converge to the global optimum. Each process is 
convergence to the global optimum, at least 
satisfactory solution under the best individual survives 
besides the last course. And illuminate a population 
converge with probability one in the no mutation 
operator conditions. By comparing the experiment, we 
can see that the algorithm have better convergence 
than SGA and consist with the theory. 

1. INTRODUCTION 

Genetic algorithms (GAs) are general purpose 
stochastic search methods modeled on natural genetics 
and the survival of the fittest. It uses the biological 
evolution, in particular, the terms and principles of 
genetics to solve problems, has stable biological basis, 
clear-cut and cognitive science, natural parallel (It uses 
groups search in place of regular single-point search) 
and for any type of function (In particular, the type of 
function can be no expression or expression which can 
not be accurately calculated) have the highlight 
characters that can be used and so on. Since this type of 
technology does Holland [1] put forward, the area of 
the science of mathematics, computer and information 
and artificial intelligence have obtain general concern 
and enthusiastic study. 
  Although the application of genetic algorithms has 
been a great success, the theoretical basis (in particular, 
on the basis of mathematics) remain need to be further 
study [2, 3]. Some of the main issues of genetic 
algorithm have not resolved yet. In recent years, the 
convergence of genetic algorithm research has yielded 
some progress that provides the basis of theory to the 
availability of algorithm. Many of studies of different 
genetic algorithm have been summarized in [4], the 
value of the number of genetic algorithm has been put 
forward in [5], and [6] discussed the character of 
genetic algorithm convergence. But so far, a complete 

genetic algorithm convergence has few results 
relatively. Many research put forward variety of 
improvements of the genetic algorithm, for instance, 
Hybrid Approach [7], VCGA [8], and HVCSDA [9]. 
To overcome the problem of premature convergence of 
the CGA, Zheng etc. proposed the genetic algorithm 
based on space mating [10]. However, these 
improvements are based on experiments and lack of 
theoretical analysis and proof.  
  This paper proves and illuminates the existence 
condition of the convergence in the genetic algorithm 
based on space mating by Markov chain analysis. In 
section 2 we introduce the algorithm and some 
definition. Section 3 is devoted to a complexity 
analysis s and some discussion of the behavior of the 
algorithm. Section 4 we give the contrast experiment, 
which is the SGA and the other is SMGA(genetic 
algorithm based on space mating). A summary of 
results is given in Section5. 

2. GENETIC ALGORITHM BASED ON SPACE 
MATING 

2.1.  The Algorithm 
Genetic algorithm based on space mating start-up the 
number of n parallel Process at the beginning. They are 
used to explore space, so we call the Process is 
exploration. Once satisfying condition, then select one 
exploration randomly and take the Process of the model 
variables out. If empty, then the extracted Pattern 
added the local Pattern variables directly, otherwise, 
with the long-distance Pattern mating (space mating). 
The Process continue to carry out, when the population 
converge to a solution (May be the local solution), put 
the “optimal” solution to the development Process, then 
extract the local Pattern variables, continue the above 
steps, until received the termination signal so far. To 
make full use of the explore ability with large mutation 
probability and the crossover probability, then start-up 
aided Process. At the beginning, it brings individuals 
randomly, in the evolution Process, it just exchange the 
best individual with the development Process. At last, 
due to the development Process is not convergence, the 
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other Process (main Process) deal with it. The 
algorithm can be sketched as follows: 
  In the real world, multi-peak value problems are 
very complex. How to solve this problem? We can 
introduce Pattern division and space mating. There are 
some definitions as following. 
Definition 1: R is a Pattern vector, and if all of the 
individuals in a population P can match vector R, we 
call the population Pattern Space P with R. 
Definition 2: 1R  and 2R  are two different vectors. 
After the crossover operator between 1R and 2R , there 
are two new Pattern vectors, namely '

1R and '

2R . We 
will obtain Pattern Space 1P  with '

1R  and 2P  
with '

2R . That is Space Mating.   
Definition 3: In evolution population P, at the t 
generation pi is defined as the optimal individual, 
whose fitness function f( pi ) is maximum, namely 
f( max t ), and tF  is the average of all individuals. 

( ) (max )t t th p f F= −  is called Distance of population 
P at the t generation. If t=0, it is initial population. If 

0( ) ( )*2 / 3th p h p< , we will consider the population as 
convergence. 
Definition 4: In the evolutional 
population 1 2{ , ,... }popP A A A= , one 
individual 1 2( , , ... )i i i i

mA a a a= , m is the chromosome 
length and pop is the population size. R is the Pattern 
vector. We Extract Pattern as following rules. There is 
a function 

i 1

i j j

j

1  a
(a ) (1 ; 1, 2, ... )

0     else
j

a
f i pop j m

=
= ≤ ≤ =  

And
1

( )
pop

i

j j j
i

c f a
=

= . 

(1) If * 2 / 3jc pop> , then the j-th component of R 
is 1 1

j j( {0,1})a a ∈ . 
(2) If *1/ 3jc pop< , then the j-th component of R 

is 1

ja . 
(3) Else the j-th component of R is *. 
Definition 5: Initial population P with Pattern vector 
R. if R[ i ] is not *, all of the individuals i -th gene will 
be R[ i ]. Else it is the 0 or 1 arbitrarily.   
  We introduce Process to implement the Space 
Mating. At the beginning, we initial n Pattern vector 

R[n], and Initial n populations P[n] with R[n] as the 
Definition 5. All of the Process run independently, 
including Sub-Process and Main-Process. Then 
Sub-Process submits the optimal solution to 
Main-Process. When the population is convergence 
(Definition 3), Extract Pattern (Definition 4) and Space 
Mating (Definition 2). All the Sub-Process will stop at 
the same until they get the signal from the 
Main-Process. Figure 1 shows the relation between the 
Sub-Process and Main-Process. We will describe the 
algorithm in detail.  
Algorithm 1: Sub-Process 

Step1: Initial population with Pattern vector R (similar 
to Definition 1); 
Step 2: Implement SGA to generate new population; 
Step 3: Submit the optimal solution to Main-Process 
from the Sub-Process; 
Step 4: If the population is convergence (Definition 3) 
then extract Pattern as Definition 4 and Space Mating 
with another Sub-Process Pattern vector R’ as 
Definition 2. Then go to Step 1; 
Step 5: Go to Step 2. 

Figure1: The relationship between Sub-Process and Main-Process 

  Algorithm 1 is only operating framework, and the 
detailed design has proposed as above. Additionally, 
we can run the number of n Sub-Process at the same 
time, and every one has its separate population and 
Pattern space, although they have the same operators, 
such as selection, crossover and mutation operators. 
We submit the best solution to Main-Process 
population after every generated new population. If 
there population is convergence, we will call some 
operators in Pattern space, for example Extract Pattern 
and Space Mating. 
Algorithm 2: Main-Process 

Step 1: Initial the population; 
Step 2: Update population with the Sub-Process 
optimal solution; 
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Step 3: Implement SGA to generate new population. 
Go to Step 2. 
  Main-Process is also independent with each 
Sub-Process. At the beginning, we initial the 
population randomly. But it is different from the SGA, 
there have two ways to update the population. The one 
is evolution operator as SGA, and the other is 
submitted optimal solution from the every Sub-Process. 
Algorithm 3: Overall the Space Mating 

Step 1: Initial n Pattern vector;  
Step 2: Run n Sub-Process and Main-Process; 
Step 3: If stopped condition is not satisfied, go to Step 
2, else terminate n Sub-Process and Main-Process. 

In algorithm 3, its framework is similar to the SGA. 
The stopped condition is the predefinition evolution 
generation. When the condition is satisfied, all of the 
Process are terminated and output the results. 
2.2. Finite Markov Chains 

  A future state just related to the current state and 
nothing to do with the past that is Markov chain. A 
finite Markov chain describes a probabilistic trajectory 
over a finite state space S of cardinality |S|=n, where 
the states may be numbered from 1 to n. The 
probability ( )p t

ij
 of transitioning from state i S∈  

to state j S∈ at step t is called the transition 
probability from i  to j at step t. If the transition 
probabilities are independent from t, i.e., 
 ( ) ( )p t p s

ij ij
= for all ,i j S∈  and for all ,s t N∈ , 

the Markov chain is said to be homogeneous. For each 

first arrive, [0,1]iif ∈  and ( )

1

1n

ii ii
n

f f
∞

=

= =  for 

all i S∈ . If the finite homogeneous Markov chain can 
reach the any state of the NS limitless, it is possible to 
convergence.  

3. MARKOV CHAIN ANALYSIS OF GENETIC 
ALGORITHM BASED ON SPACE MATING 

The genetic algorithm based on space mating can be 
described as a Markov chain: The state of the algorithm 
depends only on the genes of the individuals so that the 
state space i N l nS B B= = , where n denotes the 
population size and l is the number of genes. Each 
element of the state space can be regarded as an integer 
number in binary representation. 
THEOREM 1 The series of population for the genetic 
algorithm based on space mating is a 
finite-homogeneous Markov chain. 
 

THEOREM 2 For any states i, make ij ijg f= , if j is 
recurrent, 0ijg = , if j is non-recurrent. 
PROOF: Let kA e= (at least have k-n 
make )nX j( e) =  
Clearly 

1k kA A+ ⊂ and lim ( ) .i k ijk
P A g

→ ∞
= (1) 

 On the other hand  
 { }1

1

( ) ( , 0 , , )i k i v m m n
m

P A P X j v m X j X j
∞

+ +
=

= ≠ < < = =    

1
( ,0 , )i v m j

m

P X j v m X j P
∞

=
= ≠ < < = ( )nX j( e) = ) 

( )

1

( ) ( )m

ij j k ij j k
m

f P A f P A
∞

=

= =   (2)  

Because the arbitrary i , repeated iteration (2), note 

that 1( )j jjP A f= ,  

1 1( ) ( ) ( ) k

i k ij jj j k ij jj
P A f f P A f f+ −= = =  

Let k → ∞  

Thus  

ij ijg f= , if 1jjf = . 0ijg = , if 1jjf < .                              

The nature state must be the recurrent and the average 
time for return i must limited in a finite Markov chain, 
so it must be the positive recurrent type, and then 

1i j i jg f= = .Thus from one state to another state 
with  infinite time, in other words, it prove that 

( ){ }; 0X n n ≥ can reach any state with infinite time in 
NS with probability one. As the explore Process adopt 

elitist selection[13], then submitted satisfactory 
solution to the development Process, at the aided 
Process submitted the better individuals time , the 
development Process adopt elitist selection too, so the 
development Process submitted the satisfactory 
solution to the main Process, the crossover probability 
is so little and have no mutation operator in main 
Process, at last, the convergence of the algorithm occur 
in the main Process, the prove of the convergence of 
the algorithm can be analyzed as follows: 
THEOREM 3 The series of population for the elitist 
selection is a finite-homogeneous Markov chain 
PROOF: First, ( ) ( )( )1 m c sX n T T T X n+ =  , 

Clearly 

( )1X n +  just relate to ( )X n . so ( ){ }; 0X n n ≥ is 

a finite Markov chain, and the transition probability 
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( ) ( ){ }1P X n Y X n X+ = = = 

( )( ){ }
1

N

kk
k

P T X n Y
=

=∏ , exist ( )0i M X∈ that  

Make 
0N iY X= or else  

( ) ( ){ }1 0P X n Y X n X+ = = = .               

(1) 

Where { }0 arg m x ( ( ))j
j

i a f X n=   

( ) ( ) ( ){ }{ }; maxi jM X i f X f X= =  

So ( ) ( ){ }1P X n Y X n+ = have nothing to do with 

n, then it is a finite-homogeneous Markov chain. The 

transition probability may recorded as 

{ } ( ) ( ){ }, 1P X Y P X n Y X n X= + = = . 

(2) 

THEOREM 4 The series of population for the elitist 

selection converge to the subset 0M ∗  of the 

satisfactory set M ∗
 with probability one. 

Where ( ){ }0 1, , ;N NM Y Y Y Y M∗ = = ∈   

Namely  ( ) ( ){ }00lim 0 1
n

P X n M X X∗

→∞
∈ = =  

PROOF: Let X be the best solution of the ( )f X . 
Because (1) and (2), we know that the property of  

{ },P X Y : 

(1) when X Y 0M ∗∈ , 

{ } { }, 0, , 0P X Y P Y X> > .Namely, X Y↔  

(2) when 0 0,X M Y M∗ ∗∈ ∉ , { }, 0P X Y = .Namely, 

X Y→ .And then 0M ∗ is non-irreducible closed 

sets of recurrent, 0\NS M ∗  is the non-recurrent 

state set. So  

( ) ( ){ } ( ) *

0
0

*

0

,
lim 0

0,n

Y Y M
P X n Y X X

Y M

π

→∞

∈
= = =

∉
 

Clearly    

( ) ( ){ }*
00lim 0 1

n
P X n M X X

→∞
∈ = =  

In the main Process, genetic algorithm based on space 
mating adopt no mutation operator that make the 
algorithm converge. 

   THEOREM 5 If ( ){ }; 0X n n ≥ is the series of 
population for the genetic algorithm based on space 
mating, 0mp = , H is the homogeneous population of 
the whole. Namely, ( ){ }, , ;H X X X S= ⋅ ⋅ ⋅ ∈  
For any n 1≥ , ( ) ( ){ }/ 0 1P X n H X X∈ ∈ =  
PROOF:  For any X H∈ , ( )X Xϕ = , where 
ϕ X is the smallest schema that contains X. Thus 
when Y H∉ , for 
any 1n ≥ , ( ) ( ){ }/ 0 1P X n H X X∈ ∈ = , and then 

( ) ( ){ }/ 0P X n H X H∉ ∈  

= ( ) ( ){ }/ 0
Y H

P X n Y X H
∉

= ∈  

=
( ) ( ){ }

( ){ }
, 0

0Y H

P X n Y X H

P X H∉

= ∈

∈
 

=
( ) ( ){ } ( ){ }

( ){ }
/ 0 0

0Y H X H

P X n Y X X P X X

P X H∉ ∈

= = =

∉
 

=0 
Hence, 

( ) ( ){ }/ 0 1P X n H X X∈ ∈ =  

THEOREM 6 If ( ){ }; 0X n n ≥ is the series of 
population for the genetic algorithm based on space 
mating, mp =0, H is the homogeneous population, then 

( ){ }; 0X n n ≥ is converge to H with probability one. 
Namely  

( ){ }lim 1
n

P X n H
→∞

∈ =  

PROOF: If ( )0X H∈ , theorem 5 has proven, let 

( ) ( )10 , , NX X X H= ⋅ ⋅ ⋅ ∉ . 
Notes that  

{ } ( ){ }, ( 1) /P X Y P X n Y X n X= + = =  

{ } { }, ,
Y H

P X H P X Y
∈

=  

Then  

{ } ( ) ( ) ( ){ }
1

, 1 , , /
N

i i
i

P X H P X n X X X n X
=

≥ + = ⋅ ⋅ ⋅ =

 

( )

( )

2

2
1

1

0

N

N
i

N
i

j
j

f X

f X
=

=

= >  

Note that  
( ){ }min , ;a P Y H Y H= ∉  
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Then 0 1a< <  
For ( ){ }min 1;T k X k H= ≥ ∈ and 1k ≥  

{ } { } { } { }
1 1

1 1 2 1
, ,

, , ,
k

k
Y Y H

P T k P X Y P Y Y P Y H
−

−
⋅⋅⋅ ∉

= = ⋅ ⋅ ⋅  

( ) 11 k
a

−≤ −  
Hence  

( ) { } ( )
1

2
1 1

1
1

k

k k

E T k T k k a
a

−∞ ∞

= =

= ⋅ = ≤ − = < ∞  

Thus { } 1P T < ∞ = , 

( ){ } { }lim 1
k

P X k H P T
→∞

∈ = < ∞ =  

From the theorem 5 and 6, we can see the main 
Process is always convergence. 
The upper described that the whole algorithm converge 
to the global optimum in the main Process. 

IV. EXPERIMENT 

  To evaluate the convergence of the proposed 
algorithm, we compare its result against SGA with 
elitist. First we introduce 6 test functions as the Figure 
2. 
  From the Figure2, we know that all of test functions 
are multi-peak value problems apart from (a), and each 
has the unique optimal solution, for example, test 
function f’s value is -1.803 when 1 2 2.023x x= = , 

and others are 0 when 1 2 0x x= = or 0x y= = . 
  In this paper, we consider the minimization problem. 
We design the fitness function based on the test 
functions. If the individual is closed to the global 
optimal solution, its fitness value approaches 1. Figure 
3 shows the mean and average fitness value of every 10 
generations, which are obtained by the Space Mating 
genetic algorithm (SMGA) and Simple genetic 
algorithm with elitist (SGA). 
   

 

 (a): Sphere Model  
2 2( , )f x y x y= +  

( , [ 10,10])x y ∈ −  

(b): Rastrigrin: 

2

2

( , ) 20 10cos(2 )
               10cos(2 )
f x y x x

y y

π
π

= + −
+ −

( , [ 10,10])x y ∈ −  

(c): Schaffer's f6: 
2 2 2

2 2 2 2

sin 0.5
( , ) 0.5

(1 0.001 ( ) )
x y

f x y
x y

+ −
= +

+ × +
( , [ 10,10])x y ∈ −  

(d):Griewangk's: 
2

1 1

( ) cos( ) 1
4000

nN
i i

i i

x xf x
i= =

= − +∏  

1 2( , [ 10,10])x x ∈ −  

(e)Ackley's Path function: 

2

1

1

1( ) 20exp( 0.2 )

1  exp( cos(2 )) 20

n

i
i

n

i

f x x
n

x e
n

π

=

=

= − −

− − + +

 

1 2( , [ 10,10])x x ∈ −  

(f)Michalewicz's: 
2

20

1
( ) sin( )sin ( )

n
i

i
i

i x
f x x

π=

×= −

 

1 2( , [0, ])x x π∈  

Figure2 : Function formula 
 

a b c 

d e f 
Figure 3: The mean and average fitness value every 10 generations 

 
From (a), (b), (c) in the Figure 3, we find that two 

algorithm can find the global optimal solution. The 
best fitness curve achieves 1.0, that’s to say, there 

have a individual in the population is the global 
solution. The other two curves interpret us whether 
the population is convergence or not. If the average 
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value curve is closed to 1.0, the population 
approaches convergence. The three figures tell us 
that the SMGA doesn’t dominate the SGA 
completely. But the former is better than the latter at 
many local populations, for example, between 40 and 
90 generation and after 140 generation and so on the 
former is better than the latter in Figure (a). 

As the (d) and (e), two methods could find the best 
solutions. SMGA outperform the SGA obviously, 
because the SMGA ’s average fitness value curves 
are close to 1.0 than the SGA’s. 
  The last figure (f) shows SMGA could find the 
best individual, however, the SGA can’t. SGA’s 
average and best curves are about the same one, and 
it is far from 1.0. In other words, SGA could only 
obtain the local solution. At the same time, SMGA 
should be convergence with the lapse of generation. 

All the experiments show the SMGA exceed the 
SGA, not only the convergence but also finding the 
global optimal solution. The results of experiment are 
concordant with the theory. 

4. CONCLUSION 

In this paper, the model of genetic algorithm based 
on space mating have been set-up, the algorithm 
divided the whole search space into non-intersect 
sub-space through the space mating, but also adopt 
the way of the Process to make the sub-space as the 
operation object, It has been optimized and reduce 
continuously by itself.. Algorithm has always 
maintained a low probability of crossover. 
Therefore, it is not diversity of groups suddenly at 
some time, but to maintain diversity of groups on the 
whole, at the same time, continue to accumulate 
useful information, the algorithm converge to the 
global optimum at the end and overcome the problem 
of premature converge effectively .In this paper, the 
theory of genetic algorithm based on space mating 
has been analyzed, and discussed 
The convergence of algorithm and the problem of 
objects under no mutate operator conditions, 
Theoretical Analysis of Algorithms will provide the 
necessary theoretical basis, and indicate the direction 
of improving the algorithm. Through the contrast of 
the six experiments, clearly, the algorithm in the 
theory of convergence, convergence rate, the 
complexity of the time and so on have better result. 
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