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Extreme Learning Machine (ELM) is an emergent technique for training Single-hidden

Layer Feedforward Networks (SLFNs). It attracts significant interest during the recent
years, but the randomly assigned network parameters might cause high learning risks.
This fact motivates our idea in this paper to propose an evolving ELM paradigm for clas-
sification problems. In this paradigm, a Differential Evolution (DE) variant, which can
online select the appropriate operator for offspring generation and adaptively adjust the
corresponding control parameters, is proposed for optimizing the network. In addition,
a 5-fold cross validation is adopted in the fitness assignment procedure, for improving
the generalization capability. Empirical studies on several real-world classification data
sets have demonstrated that the evolving ELM paradigm can generally outperform the
original ELM as well as several recent classification algorithms.

Keywords: Extreme learning machine; adaptive operator selection; parameter control;
differential evolution.

1. Introduction

Extreme Learning Machine (ELM)6 is an emergent technique for training Single-

hidden Layer Feed-forward Neural networks (SLFNs). Instead of adjusting the net-

work parameters iteratively, in ELM, the input weights and hidden biases are

chosen randomly while the output weights are calculated analytically by using

Moore-Penrose (MP) generalized inverse. ELM has an error bound similar to

RBFNN2 which is experimentally proved to have better accuracy than the rule-

based methodologies.24 The architecture selection of networks in ELM has been

discussed in Ref. 23. An ensemble strategy for ELM and an upper integral network

classifier system have been proposed in Ref. 26, respectively. Moreover, in the past
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few years, much effort has been devoted to applying ELM for various real-world

problems, such as image classification7 and visual tracking.19 A recent comprehen-

sive survey on ELM can be found in Ref. 4. Compared with gradient based methods,

ELM not only have faster training speed and better generalization performance, but

also avoids the problem of local optima. However, it is argued that the randomly

assigned input parameters may affect the final performance a lot and the selection

of appropriate parameters can reduce the learning risk of ELM.18

In artificial intelligence, Evolutionary Algorithm (EA) is a subset of evolutionary

computation, a generic population-based metaheuristic optimization algorithm. It

is relatively easy to implement and can be used for problems even without good

mathematical properties. In order to improve the robustness of the original ELM

and reduce its learning risk, this paper presents an evolving ELM paradigm, which

aims at finding a near optimal set of network parameters globally within a fixed

network architecture. To be specific, it hybridizes a Differential Evolution (DE)

variant,8 with ELM to optimize the intrinsic network parameters. The DE variant

under use is with adaptive operator selection and parameter control. In particular,

four DE mutation operators with diverse search characteristics are combined to form

an operator pool, and the proposed DE algorithm can online select the appropriate

operator for the current offspring generation. Meanwhile, the hyper-parameters

related to those operators are tuned adaptively according to the current fitness

landscapes. Moreover, the generalization performance of the classifier and the norm

of the output weights are combined to form a fitness function, which is used to

evaluate the quality of an individual.

The remainder of this paper is organized as follows: Section 2 presents the back-

ground of this work. Section 3 gives the technical details of our proposed evolving

ELM paradigm. Section 4 presents and analyzes the empirical results. Finally, Sec. 5

concludes this paper and highlights some possible future directions.

2. Background and Related Works

In this section, some background of ELM is introduced at first, and several related

works on hybridizing EAs with ELM for training NNs are then reviewed.

2.1. Extreme learning machine

ELM theories, proposed by Huang et al.,5 claim that the input weights and hidden

biases of SLFNs can be randomly assigned if the activation function is infinitely

differentiable and the output weights can be analytically determined by solving a

linear system using the least square method, without any learning iteration.

Suppose that we have N arbitrary distinct samples (xi, yi), where xi =

[xi1, xi2, . . . , xin]
T ∈ Rn and yi = [yi1, yi2, . . . , yim]T ∈ Rm. Let H be the number of

hidden neurons, wi = [wi1, wi2, . . . , win]
T be the input weight vector connecting the

ith hidden neuron and the input neurons, b be the H×1 bias values for each hidden

neuron and β be the H ×m output weight matrix, where βi = [βi1, βi2, . . . , βim]T
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is the weight vector connecting the ith hidden neuron and the output neurons. In

general, the ELM network structure can be mathematically modeled as:

yj =

H∑

i=1

βig(wi · xj + bi) (1)

where j ∈ {1, 2, . . . , N}, wi ·xj denotes the inner product of wi and xj , and g(x) is

the activation function. Without loss of generality, the sigmoid additive activation

function is chosen as g(x) here, which is formulated as:

g(x) =
1

1 + exp[−(w · x+ b)]
. (2)

In ELM, the input weights and hidden biases are randomly chosen, while the

output weights are calculated analytically as:

β = Y
†
HY (3)

where Y
†
H is the Moore-Penrose (MP) pseudo-inverse of the hidden layer output

matrix YH , and Y = [y1, y2, . . . , yN ]T .

2.2. Methods of tuning ELM parameters

As discussed in Sec. 1, ELM can achieve a good generalization performance with an

extremely fast learning speed, comparing to the traditional gradient based learning

algorithms. However, the network parameters, i.e. input weights and hidden biases,

can largely influence the performance of ELM. This can be explained by the fact

that ELM tries to find the global optimum of a localized linear system while this

might not be the global optimum in the problem space. There are several works in

this literature to find the near optimal network parameters of ELM. Liu et al.12

proposed an ensemble based ELM (EN-ELM), in which ensemble learning and cross

validation are embedded into the training phase to minimize the jeopardy caused

by the overfitting problem and thus enhance the predictive stability. Miche et al.13

proposed an optimally pruned ELM (OP-ELM), which improves the learning ability

by pruning the useless neurons. Cao et al.1 presented a voting based ELM (V-ELM)

by employing the majority voting scheme. Zhu et al.28 presented an evolutionary

ELM (E-ELM) in which the basic DE algorithm is employed to evolve the network

parameters. Based on the same framework of E-ELM, Silva et al.20 and Xu et al.25

proposed other two evolutionary ELMs. The only differences of the latter two are

their evolutionary parts, which replace the original DE algorithm with Group Search

Optimization (GSO)3 and PSO, respectively. In Ref. 18, Saraswathi et al. proposed

a hybrid EA with ELM, called ICGA-PSO-ELM, for gene selection and cancer

classification.

3. Evolving ELM Learning Paradigm

In this section, the proposed DE algorithm and the system architecture of the

evolving ELM paradigm are described in detail.
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Fig. 1. The framework of the proposed DE algorithm with adaptive operator selection and
parameter control.

3.1. DE with adaptive operator selection and parameter control

The general framework of the proposed DE algorithm with adaptive operator selec-

tion and parameter control (denoted as AdapDE) is given in Fig. 1. The right hand

side is the adaptive operator selection module, which can select operators online

based on their previous performances; while the parameter control module, which

adjusts the parameters adaptively, is laid on the left hand side. The middle part is

the main search engine, DE algorithm. Due to the page limitation, the pseudo-code

of AdapDE is presented in supplementary file of this paper.a

In this paper, each solution in the evolutionary population is encoded with input

weights and hidden biases as:

C = [w11, . . . , w1H , w22, . . . , w2H , . . . , wn1, . . . , wnH , b1, . . . , bH ] . (4)

Each input weight wi,j is initialized within the range of [−1, 1] while the hidden

bias bi is initialized within the range of [0, 1]. The solution quality is evaluated as

the following aggregation term:

fitness = Eaccuracy − αw × ‖β‖ (5)

where Eaccuracy is the K-fold cross validation accuracy, ‖β‖ is the average norm

of the output weights and αw is a user defined parameter to adjust the penalty

term to the cross validation accuracy. From our preliminary experiments, we set

αw = 0.01 without loss of generality. It is obvious that the larger the fitness is, the

better the individual would be.

3.2. Adaptive operator selection

Adaptive Operator Selection (AOS) paradigm aims at autonomously controlling

which operator should be applied at each time point of the search, when solv-

ing the problem, based on their recent performances. In this paper, the proposed

AOS paradigm consists of two components: the credit assignment module defines

aThe supplementary document can be downloaded from http://www.cs.cityu.edu.hk/

~51888309.

http://www.cs.cityu.edu.hk/
~51888309
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how each operator should be rewarded based on the impacts of its recent applica-

tions; and the operator selection mechanism decides which of the available operators

should be applied next, according to their empirical quality estimates, which are

built and constantly updated by the corresponding rewards.

3.2.1. Credit assignment module

In order to assign the credit value for an applied operator, in this work, we adopt

the impact assessment scheme used in Ref. 15 as follows:

ξ =
cfi

ϕ
× |pfi − cfi| (6)

where i ∈ {1, 2, . . . , NP}. ϕ is the best-so-far fitness value in the current population.

pfi and cfi are the fitness values of the parent solution and its corresponding

offspring, respectively. It is worth noting that ξ is set as zero if pfi > cfi.

All impacts achieved by the application of mutation operator a ∈ {1, . . . ,K} at

generation g are stored in a specific set Ra. At the end of each generation, a unique

credit value is assigned to each operator, based on the values stored in Ra:

ra(g) =

|Ra|∑

i=1

Ra(i)

|Ra|
· (7)

3.2.2. Operator selection: probability matching

The operator selection mechanism usually selects the appropriate operator,

according to the empirical quality estimates. These estimates are built and con-

stantly updated by the received credit values. In this work, we apply the state-of-

the-art operator selection mechanism Probability Matching (PM)21 as follows. Let

the set of operators be S = {s1, . . . , sK} where K > 1. The probability vector

P (g) = {p1(g), . . . , pK(g)}(∀t : pmin ≤ pi(g) ≤ 1;
∑K

i=1 pi(g) = 1) represents the

selection probability of each operator at generation g. The current empirical quality

estimate of operator i is denoted as q̂i(g). At each generation g, the ith operator is

selected, by roulette wheel selection, according to the probability pi(g), and obtains

a reward ri(g) from the credit assignment module. The empirical quality estimate

of the ith operator q̂i(g) is updated by using q̂i(g+1) = (1−α)× q̂i(g)+α× ri(g),

where rate α ∈ [0, 1].

After the empirical quality estimation, the PM method updates the selection

probability as follows:

pi(g + 1) = pmin + (1−K × pmin)×
q̂i(g + 1)

∑K

i=1 q̂i(g + 1)
(8)

where pmin ∈ [0, 1] is the minimal selection probability value for each operator. This

parameter is used to ensure that all operators will always have a minimal chance

of being selected, in order to avoid “losing” a currently bad operator that might
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become useful at a further moment of the search. Then, any inefficient operator

(getting only null credits, i.e., no impact) will have its selection probability con-

verging towards pmin, while the best operator (getting very good credits after some

time) will be selected with probability pmax = 1− (K − 1)× pmin.

3.3. Adaptive parameter control of CR and F

The adaptive parameter control method used here is inspired by the mechanism

used in Ref. 27. Let CRa
i denotes the crossover rate for the individual i using oper-

ator a ∈ {1, . . . ,K}. At each generation, CRa
i is independently generated according

to the normal distribution with mean µa
CR and standard deviation 0.1, CRa

i is re-

generated whenever it exceeds 1. All successful crossover rates at generation g for

operator a are stored in a specific set denoted as Sa
CR. In particular, the crossover

rates, which can successfully generate offspring that survive for the next genera-

tion, are considered as available ones. The mean µa
CR is initialized to be 0.5 and

updated after each generation as µa
CR = (1 − wcr) × µa

CR + wcr × mean(Sa
CR),

where mean(Sa
CR) is the arithmetic mean of values in Sa

CR and wcr is a random

number generated as wcr = 0.2 × rndreal(). The adaptation of the scaling factor

F a
i is similar to that of CRa

i . At each generation, F a
i is independently generated

according to a Cauchy distribution with location parameter µa
F and scale factor 0.1.

The value of F a
i is regenerated whenever F a

i is out of the range [0, 1]. All successful

scaling factors at the current generation for operator a are stored in a specific set

denoted as Sa
F . The mean µa

F is initialized to be 0.5 and independently updated

after each generation as µa
F = (1−wf)×µa

F +wf ×meanr(S
a
F ), where meanr(S

a
CR)

is the root-mean-square of values in Sa
F and wf is a random number generated as

wf = 0.1× rndreal().

3.4. Operator pool

Many different DE mutation operators have been proposed in this literature,16 with

each one owning its distinctive search behavior. As discussed in Ref. 17, the theo-

retical studies on the choice of the optimal number of operators in the pool and the

organization of the pool with appropriate operators are still open. In this work, we

generally maintain an operator pool including four well-known DE mutation op-

erators, i.e., “DE/rand/1” “DE/best/1” “DE/rand/1”, “DE/current-to-rand/1”,

with effective yet diverse characteristics. Due to the page limitation, more detailed

description of these four mutation operators can be found in Refs. 9 and 16.

3.5. System architecture of the evolving ELM paradigm

The system architecture of the evolving ELM paradigm (denoted as Evo-ELM)

based on the proposed AdapDE is shown in Fig. 2. In order to avoid the problem

that attributes in greater numeric ranges dominate those in smaller numeric ranges,

we adopt the linear scaling to preprocess the input data. Each feature value of the
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Fig. 2. System architecture of the proposed evolving ELM paradigm.

data set can be linearly scaled to the range [0, 1] by v∗ = v−min
max−min , where v is the

original value, v∗ is the scaled value, max and min is the upper and lower bounds

of the feature value, respectively.

4. Performance Verification

In this section, the performance of our proposed evolving ELM paradigm is com-

pared with the original ELM, as well as several other recent classification methods,

including evolutionary ELM (E-ELM),28 voting based ELM (V-ELM),1 ensemble

based ELM (EN-ELM),12 back-propagation algorithm (BP),14 radial basis function

NN (RBFNN)2 and support vector machine (SVM).22 Simulations are conducted

on 14 real-world classification data setsb as listed in Table 1.

The related parameters of the comparative methods are generally set as follows.

As for the proposed evolving ELM paradigm, the population size and the maxi-

mum number of generations are all set to be 100; the minimum operator selection

bUCI machine learning repository: http://archive.ics.uci.edu/ml/



October 4, 2013 11:14 WSPC/118-IJUFKS S0218488513400229

150 K. Li et al.

Table 1. Specification of the classification problems

Data sets # Classes # Training samples # Testing samples # Features

SPECTF 2 178 45 44

Diabetes 2 576 192 8

Breast cancer 2 379 190 30

Iris 3 100 50 4

Wine 3 118 60 13

Yeast 10 989 495 8

Vowel 11 528 462 10

Soybean 19 307 376 35

Segment 7 1500 810 19

Car 4 1152 576 6

Optdigits 10 3823 1797 64

Pen 10 7494 3498 16

Satellite 6 4435 2000 36

Letter 26 15000 5000 16

probability pmin = 0.05 and the adaptation rate α = 0.3, as recommended in Ref. 21.

As E-ELM is also based on DE algorithm, for the sake of peer comparison, the popu-

lation size and maximum number of generations are set as the same as our proposed

algorithm; while the control parameter of DE in E-ELM, i.e. CR and F , are set

constantly to be 0.8 and 1.0, respectively, according to the suggestions in Ref. 28.

Furthermore, the number of independent ELMs for voting and constructing ensem-

ble in V-ELM and EN-ELM are all set to be 7, according to the recommendation

in Ref. 1. For all the NNs, the number of hidden neurons is set to be 50 and the

activation functions are set as sigmoid. As for SVM, the radial basis function kernel

is chosen, the cost parameter C and the kernel parameter γ are searched in a grid

formed by C = [212, 211, . . . , 2−2] and γ = [24, 23, . . . , 2−10], and the best combi-

nation is then obtained in terms of the generalization performance. Moreover, 30

independent runs are conducted with fixed size of SLFN on each data set, while

the mean results and standard deviations are given in Table 2.

4.1. Empirical results

From the empirical results shown in Table 2, we can clearly find that our proposed

Evo-ELM outperforms the original ELM on all data sets with statistical signifi-

cance, which fully concludes that the performance of the original ELM has been

improved by our network optimization process. As for E-ELM, which also optimizes

network parameters by an EA, our proposed Evo-ELM shows significantly better

performance than it on 12 data sets out of 14. Besides, V-ELM and EN-ELM are

recently proposed ELM variants, both of which perform multiple independent ELM

training. It is observed that the performance of EN-ELM is slightly inferior to that

of V-ELM, nevertheless, both of them are outperformed by Evo-ELM on most of

the cases, while V-ELM only wins on the data set Breast cancer. BP and RBFNN
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are two classical NNs whose underlying mechanisms are different from that of ELM.

The comparative results of them are given in the fifth and sixth columns of Table 2,

respectively. Generally speaking, our proposed Evo-ELM still outperforms them on

most of the data sets except for some special cases, i.e., BP outperforms Evo-ELM

on Car and Satellite, RBFNN outperforms Evo-ELM on Breast cancer and Opt-

digits with statistical meaning. Finally, as shown in the seventh column of Table 2,

SVM shows better performances on 4 data sets out of 14, with 2 significant results.

Due to the page limitation, further investigations of the underlying mechanism of

AdapDE are presented in the supplementary document of this paper.

5. Conclusion

In this paper, an evolving ELM paradigm that integrates ELM and DE is presented

for classification problems. Specifically, a DE variant (AdapDE) with adaptive oper-

ator selection and parameter control is proposed to optimize the network parameters

of the baseline ELM. AdapDE is able to online select the appropriate operator for

offspring generation, while the control parameters can be adjusted in an adaptive

manner. From the empirical studies on several real-world classification data sets, it

is clear that not only the performance of the baseline ELM is improved, but also

the proposed algorithm can outperform several recent classification methods.

In future, more advanced adaptive operator selection mechanism, such as multi-

armed bandit proposed in Ref. 9, can be considered in AdapDE. Furthermore, other

evolution operators, such as GA, jumping genes11 and guided mutation operators10

can also be considered in building the operator pool.
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