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Abstract—Adaptive operator selection (AOS) is used to deter-
mine the application rates of different operators in an online
manner based on their recent performances within an optimiza-
tion process. This paper proposes a bandit-based AOS method,
fitness-rate-rank-based multiarmed bandit (FRRMAB). In order
to track the dynamics of the search process, it uses a sliding win-
dow to record the recent fitness improvement rates achieved by
the operators, while employing a decaying mechanism to increase
the selection probability of the best operator. Not much work has
been done on AOS in multiobjective evolutionary computation
since it is very difficult to measure the fitness improvements quan-
titatively in most Pareto-dominance-based multiobjective evolu-
tionary algorithms. Multiobjective evolutionary algorithm based
on decomposition (MOEA/D) decomposes a multiobjective opti-
mization problem into a number of scalar optimization subprob-
lems and optimizes them simultaneously. Thus, it is natural and
feasible to use AOS in MOEA/D. We investigate several important
issues in using FRRMAB in MOEA/D. Our experimental results
demonstrate that FRRMAB is robust and its operator selection is
reasonable. Comparison experiments also indicate that FRRMAB
can significantly improve the performance of MOEA/D.

Index Terms—Adaptive operator selection (AOS), decom-
position, multiarmed bandit, multiobjective evolutionary al-
gorithm based on decomposition (MOEA/D), multiobjective
optimization.

I. Introduction

AMULTIOBJECTIVE optimization problem (MOP) con-
sists of several conflicting objectives to optimize. An
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MOP can be stated as

minimize F (x) = (f1(x), f2(x), . . . , fm(x))T

subject to x ∈ �
(1)

where � ⊂ Rn is the decision (variable) space and x =
(x1, . . . , xn)T ∈ � is a candidate solution. F : � → Rm

constitutes m objective functions.
Let u, v ∈ Rm, and u is said to dominate v if and only if

ui ≤ vi for every i ∈ {1, . . . , m} and uj < vj for at least one
index j ∈ {1, . . . , m}. A solution x∗ is Pareto optimal to (1)
if there is no other solution x ∈ � such that F (x) dominates
F (x∗). F (x∗) is then called a Pareto optimal (objective) vector.
In other words, any improvement in a Pareto optimal solution
in one objective must lead to deterioration in at least one
other objective. The set of all the Pareto optimal solutions
is called the Pareto set (PS). Accordingly, the set of all the
Pareto optimal vectors, PF = {F (x) ∈ Rm|x ∈ PS}, is called
the Pareto front (PF) [1].

Evolutionary algorithms (EAs) are stochastic optimization
algorithms inspired by the Darwinian evolution theory. Over
the last two decades, much effort has been devoted to develop-
ing multiobjective evolutionary algorithms (MOEAs). These
methods can generate a set of representative Pareto optimal
solutions in a single run. Moreover, they can be used for
solving problems without good mathematical properties. Since
the pioneering work of Schaffer [2], a number of MOEAs has
been proposed (e.g., [3]–[8]) and applied to a wide range of
problem domains [9], [10].

A major issue in using EAs, including MOEAs, is that one
has to set a number of control parameters and select genetic
operators to which the algorithm performance is often very
sensitive. Different problems require different settings; people
from other domains often find it very hard to make a proper
setting for their problems without help from EA experts. For
this reason, automatic parameter and operator configuration
has been a very important and active research topic in the EA
community [11].

In this paper, we propose and study an adaptive operator
selection (AOS) method for deciding which operator should
be employed at a time point in an MOEA. There are two
main tasks that need to be performed in an AOS method.
One is to decide how much reward (i.e., credit) should be
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assigned to an operator based on its recent performance in
the search process. The other is to select an operator to use
at the next time point based on these current reward values.
A fundamental issue behind these two highly related tasks is
the so-called exploration versus exploitation (EvE) dilemma:
one hopes to give more chances to operators with better track
records (exploitation), but also wants to explore poor operators
in the future search (exploration), since an operator might
perform significantly differently at different search stages.

The EvE dilemma has intensively been studied in the
game theory community for dealing with the multiarmed
bandit (MAB) problem. Many efficient methods for the
MAB problem can be found in the literature. A prominent
method is the upper confidence bound (UCB) algorithm [12],
which guarantees asymptotic optimality in terms of the total
cumulative reward. However, it is not straightforward to
apply these methods to the AOS problem in EAs. The MAB
problem in the game theory considers stationary reward
distributions, while the performance of an operator in the
AOS problem might significantly vary during the search
process. Moreover, the range of reward values is problem
dependent in the AOS scenario, while, in the original MAB
case, the rewards are always Boolean.

Some effort has been dedicated to the modification of MAB
algorithms, in particular, the UCB algorithm to address the
dynamic and unpredictable aspects of the AOS problem. The
dynamic MAB algorithm [13] recomputes the bandit statistics
from scratch whenever a change in the reward distribution is
detected. The sliding MAB method [14] uses a sliding window
to achieve a faster update of the quality measure of each
operator to better fit the current stage of the search process. An
extreme value-based credit assignment was proposed in [15],
which assumes that rare but high fitness improvements are
more important than frequent and moderate ones. To improve
algorithm robustness for different fitness landscapes, two rank-
based credit assignment schemes, the area-under-curve (AUC)
and the sum-of-ranks (SR), were proposed in [16]. These
bandit-based operator selection methods and credit assignment
schemes have been used in several different EAs, including
genetic algorithms and differential evolution (DE). Other AOS
methods, based on probabilities, can be found in the literature,
such as the ones used in SaDE [17], JADE [18], and jDE [19]
algorithms. However, most of the existing works concern the
single-objective optimization problems, in which the fitness
improvement of an offspring solution against its parent can
easily be measured. In MOPs, however, some solutions are
incomparable. Thus, it is not straightforward to define and
compute the quality difference between two solutions. Prob-
ably, due to this reason, the use of AOS in MOEAs is still
relatively scarce. Some pioneering works along this direction
include JADE2 [20], MOSaDE [21], OW-MOSaDE [22],
Adap-MODE [23], and MODE/SN [24]. It is also worth noting
that some other methods consider the so-called multioperators,
such as the ensemble-based method [25] and the composite
operators [26]. However, a bandit-based AOS method is dif-
ferent from these. It selects an operator according to some
deterministic rules based on MAB algorithms, while the others
usually select an operator based on some stochastic rules.

Our proposed bandit-based AOS method (FRRMAB), in
this paper, employs a sliding window to follow the dynamics
of the search process. Instead of using the raw fitness value,
the fitness improvement rate is used to evaluate the quality
difference between the parent solution and its offspring in a
normalized manner. In addition, in order to increase the influ-
ence of the best operator at the current time point, a decaying
mechanism is introduced to calculate the final credit value
of each operator. The FRRMAB AOS method is used within
an multiobjective evolutionary algorithm based on a decom-
position (MOEA/D) variant, MOEA/D-DRA [27], which was
the winning algorithm in the CEC 2009 MOEA contest. The
underlying mechanism of MOEA/D [6] is to decompose an
MOP into a number of single-objective optimization problems.
Thus, strategies for single-objective optimization can easily
be used in MOEA/D. The resulting algorithmic combination,
referred to as MOEA/D-FRRMAB, is experimentally studied
on a set of multiobjective optimization benchmark problems.
This outperforms some baseline algorithms, including some
state-of-the-art variants of MOEA/D, and MOEA/D using
other AOS methods.

The remainder of this paper is organized as follows.
The background and some related works are reviewed in
Section II. Our proposed AOS method is described in detail in
Section III, while its combination with the MOEA/D algorithm
is presented in Section IV. Experimental results are given and
analyzed in Section V. Section VI concludes this paper and
discusses some possible research issues for further work.

II. Background and Related Work

The performance of an EA depends on its parameter set-
tings. Operators can also be regarded as parameters in an EA.
A brief overview of different manners of doing a parameter
setting in EAs is given in Section II-A. Then, Section II-B
presents a more detailed description and review on the AOS
methods.

A. Parameter Setting in Evolutionary Algorithms

Different kinds of approaches for parameter setting in EAs
have been proposed in the literature. A taxonomy proposed
in [28] classifies them into two categories. One is for parameter
tuning and the other is for parameter control. The former
sets the parameters in an offline manner based on statistics
extracted from several runs, and provides a fixed parameter
setting that can be used for solving a new instance. Parameter
control methods, which dynamically adjust the parameters
during the run, can be further divided into three classes. The
first is the deterministic method that adjusts the parameters
according to some predefined problem-specific rules. The sec-
ond is the self-adaptive method that lets the parameter values
evolve by themselves by encoding them within the genotype of
candidate solutions. The last one is the adaptive or feedback-
based method, which adjusts the parameter values based on
the feedbacks received from the previous search steps.

B. Adaptive Operator Selection

AOS is a recent paradigm to adaptively select operators for
generating a new solution during the search. The selection
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is conducted based on the recent performances of operators.
AOS involves two major tasks: the credit assignment and
the operator selection. The former defines how to reward an
operator based on its recent performance in the search process,
while the latter uses these rewards to decide which operator
should be applied next.

1) Credit Assignment: The most commonly used metric in
credit assignment for measuring the quality of an operator is
based on the fitness improvement obtained by a new solution,
compared with a given baseline solution. In [29], for instance,
the best solution of the current population is considered
baseline, while in [30] the offspring’s parent is used for com-
parison. Once the quality is measured, there are different ways
to use it for rewarding the operator. The most popular approach
is to set the reward amount as the average of the recent fitness
improvements [31]. Assuming that rare, but large, improve-
ments might be more important than small ones, [32] suggests
that each operator should be rewarded based on the maximal
fitness improvement that it recently achieved. To avoid getting
trapped at locally optimal solutions, [33] takes account of both
diversity and fitness improvement for rewarding operators.
Aiming at robustness, [16] has proposed two rank-based credit
assignment schemes: the AUC and the SR methods.

2) Operator Selection: Guided by the reward values,
operator selection methods select operators for generating
new solutions. The two most promising selection mechanisms
are: 1) the probability-based methods, such as the probability
matching (PM) [34] and the adaptive pursuit (AP) [35]; and 2)
the bandit-based methods. As these methods will be used as
baselines for comparison in Section V, we will give a detailed
review in the following.

a) Probability matching and adaptive pursuit: These
methods often use a roulette wheel-like process for selecting
an operator. Let the set (or pool) of operators be S =
{s1, . . . , sK}, the selection probability of each operator at
time point t be Pt = (p1,t , . . . , pK,t)(∀t : pmin ≤ pi,t ≤
1;

∑K
i=1 pi,t = 1), and the estimated quality of operator i be

q̂i,t . At each time point t, these methods:

1) randomly select an operator, say, operator i, based on
the probability vector Pt , and use a credit assignment
scheme to give it a reward r;

2) update the quality of operator i

q̂i,t+1 = (1 − α) × q̂i,t + α × r (2)

where α ∈ [0, 1] is a user-defined parameter, the adap-
tation rate.

There are different approaches for updating the selection
probability. The PM approach does it as

pi,t+1 = pmin + (1 − K × pmin) × q̂i,t+1∑K
j=1 q̂j,t+1

(3)

where pmin ∈ [0, 1] is the minimal selection probability value
for each operator. This ensures that all the operators have
a nonzero selection probability, which can avoid losing a
currently bad operator that might become useful in the future.
An inefficient operator will have its selection probability
converging toward pmin, while an operator that works very well

will be selected with probability pmax = (1 − (K − 1) × pmin)
after getting very good rewards for a long time period. A
criticism of the PM approach is that it gives high probabilities
to operators with average performances, which may slow
down the underlying optimization algorithms. The AP method,
originally proposed for learning automata, adopts a winner-
take-all strategy to increase the chance of selecting the best
operator i∗t . This works as⎧⎨

⎩
i∗t = argmax

i∈{1···K}
{q̂i,t}

pi,t+1 = pi,t + β × (pmax − pi,t), if i = i∗t
pi,t+1 = pi,t + β × (pmin − pi,t), otherwise

(4)

where the learning rate β ∈ [0, 1] controls the greediness of
the winner-take-all strategy.

Some other AOS methods based on probabilities can also be
found in the literature, such as the ones used in the SaDE [17],
JADE [18], and jDE [19] algorithms.

b) Bandit-based operator selection: The operator
selection problem can be regarded as an instance of the EvE
dilemma: one should exploit the operators set by selecting
good operators as often as possible, while also doing some
exploration to give chances to poor operators since they may
become better in the future search. The EvE dilemma has
intensively been studied in the context of the MAB problem,
which considers a set of K independent arms (equivalent to
variation operators or strategies in the AOS literature), and
each arm has an unknown probability of being rewarded. An
optimal arm selection strategy is the one that maximizes the
cumulative reward along time. Many MAB algorithms have
been proposed to tackle this problem. Most of the recent
ones are based on the UCB algorithm [12], which provides
asymptotic optimality guarantees. In an UCB-based MAB
algorithm, the ith arm has an empirical quality estimate q̂i

and a confidence interval that depends on the number of
times ni it has been tried before. At each time point t, the
arm maximizing the following function is selected:

q̂i,t + C ×
√

2 × ln
∑K

j=1 nj,t

ni,t

(5)

where C is a scaling factor to control the tradeoff between
exploitation (the first term that favors the arms with best
empirical rewards) and exploration (the square root term that
favors the infrequently tried arms).

Some variants of the UCB algorithm have recently been
proposed to address the dynamic aspect of the AOS problem
in a more efficient way. A very recent one, the sum-of-ranks
MAB (SRMAB) algorithm [16], will be used as a baseline
for comparison with the new bandit-based AOS method we
are proposing in this paper. More specifically, at a given time
point t, SRMAB selects an operator to be applied next as
follows. First, the latest W fitness improvements achieved
by the operators are ranked. Then, a decaying mechanism is
applied over these rank values so that the top-ranked rewards,
i.e., the highest fitness improvements exert a higher influence
on the calculation of the credits assigned to the operators.
Finally, it selects the operator that maximizes (5), in which
the empirical quality estimate q̂i,t of each operator is the sum
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of their corresponding decayed rank values, and ni,t is the
number of times operator i has been applied in the recent W

applications. The SRMAB algorithm is well known as being
both very efficient and robust with respect to different fitness
landscapes. The robustness comes mainly from the use of
ranks on its credit assignment module. A more detailed survey
of SRMAB and other bandit-based algorithms for the AOS
problem can be found in [36].

III. Fitness-Rate-Rank-Based Multiarmed Bandit

Adaptive Operator Selection

In this section, we propose a new bandit-based method
for the AOS problem. The proposed method pays particular
attention to the AOS dynamic nature. This consists of two
modules. One is for credit assignment and the other is for
operator selection.

A. Credit Assignment

In credit assignment, one needs, as discussed in
Section II-B1, to address the following two issues:

1) how to measure the impact in the search process caused
by the application of an operator;

2) how to assign an appropriate credit value to an operator
based on this measured impact.

As for the first issue, the most commonly used approach
is to directly use the raw values of the fitness improvements
caused by the recent uses of the operator under assessment.
However, the range of raw fitness improvements varies from
problem to problem and even at the different stages of
an optimization process. It is common that the raw fitness
improvement value is much larger at early stages than at
later ones. Therefore, as discussed in [36], the direct use
of raw fitness improvement could deteriorate the algorithm’s
robustness. To alleviate this problem, our proposed method
uses the fitness improvement rates (FIR). More specifically,
the FIR achieved by an operator i at time point t is defined as

FIRi,t =
pfi,t − cfi,t

pfi,t

(6)

where pfi,t is the fitness value of the parent, and cfi,t is the
fitness value of the offspring.

A sliding window with fixed size W is used to store the
FIR values of the recently used operators. It is organized as
a first-in, first-out (FIFO) queue, i.e., the FIR value of the
most recently used operator is added at the tail of the sliding
window, while the oldest record (the item at the head of the
queue) is removed to keep the window size constant. Fig. 1
illustrates the structure of a sliding window. Each slot in the
sliding window stores two components:

1) the index of the operator op used;
2) its FIR value.

The major reason for using the sliding window is that, in
dynamic AOS environments, the performance of an operator in
a very early stage may be irrelevant to its current performance.
The sliding window ensures that the stored FIR information
is for the current situation of the search.

Fig. 1. Illustration of the FIFO sliding window structure.

Fig. 2. Comparison between different decaying mechanisms.

To address the second issue set at the outset of this subsec-
tion, we first compute Rewardi, the sum of all FIR values for
each operator i in the current sliding window. Then, we rank all
these Rewardi values in a descending order. Let Ranki be the
rank value of operator i, inspired by other recently proposed
rank-based credit assignment schemes [16], [32], and to give
more chances to the best operators, we introduce a decaying
factor D ∈ [0, 1] to transform Rewardi to

Decayi = DRanki × Rewardi. (7)

Then, we assign the following credit value to operator i:

FRRi,t =
Decayi∑K
j=1 Decayj

. (8)

Clearly, the smaller the value of D, the larger the influence
for the best operator. Fig. 2 illustrates FRR versus Rank with
three different values of D in a case of 15 distinct rank values.

The pseudocode of the proposed credit assignment scheme
is given in Algorithm 1.

B. Operator Selection

Based on the received credit values, the operator selection
scheme selects operators for generating new solutions. This
paper uses a bandit-based operator selection scheme. Our
scheme is similar to the original UCB algorithm [12]. The
major difference is that we use FRR values as the quality
index instead of the average of all the rewards received so far
for an operator. In addition, ni indicates the number of times
operator i has been selected in the recent W applications.

The pseudocode of our proposed bandit-based operator
selection scheme is given in Algorithm 2. The combination
of this operator selection and the credit assignment schemes
constitutes our proposed AOS method, FRRMAB. It is worth
noting that no operator has yet been applied at the beginning
of the search; thus, we give each operator an equal chance to
be selected in this case. FRRMAB is not employed until each
operator has been applied at least once.
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Algorithm 1: Procedure for the Credit Assignment

Initialize each reward Rewardi = 0;1

Initialize ni = 0;2

for i ← 1 to SlidingWindow.length do3

op = SlidingWindow.GetIndexOp(i);4

FIR = SlidingWindow.GetFIR(i);5

Rewardop = Rewardop + FIR;6

nop++;7

end8

Rank Rewardi in descending order and set Ranki to be9

the rank value of operator i;
for op ← 1 to K do10

Decayop = DRankop × Rewardop;11

end12

DecaySum =
∑K

op=1 Decayop;13

for op ← 1 to K do14

FRRop = Decayop/DecaySum;15

end16

Algorithm 2: The procedure for the bandit-based operator
selection

if There are operators that have not been selected then1

opt = one that uniformly randomly selected from the2

operators pool;
else3

opt = argmax
i={1...K}

(
FRRi,t + C ×

√
2×ln

∑K

j=1
nj,t

ni,t

)
;

4

end5

IV. Integration of FRRMAB With MOEA/D

As mentioned in Section I, most existing AOS methods
were designed and applied on single-objective optimization.
One of the major reasons could be that most popular MOEAs,
such as NSGA-II [3], SPEA2 [4], and PAES [37], compare
solutions’ qualities mainly based on their dominance relations.
In these algorithmic frameworks, it is very difficult to quantify
the quality difference between two solutions and thus the im-
provement caused by the application of an operator. Therefore,
it is not trivial to use AOS methods, which require a metric for
measuring operator performances to enhance these dominance-
based MOEAs.

MOEA/D [6] decomposes an MOP into a number of single-
objective subproblems. Then, a population-based method is
used to solve these subproblems simultaneously. Techniques
for single-objective optimization can be naturally, at least
in principle, applied to the MOEA/D framework. Several
MOEA/D variants have been proposed for dealing with various
MOPs, and MOEA/D has also been used as a basic element in
some hybrid algorithms (e.g. [38]–[42]). Any improvement on
MOEA/D could be of practical interest. For these reasons, this
paper investigates how to use FRRMAB to improve MOEA/D.

A. MOEA/D

It is well known that a Pareto optimal solution to an
MOP, under mild conditions, is an optimal solution of a
single-objective optimization problem whose objective is a
weighted (linear or nonlinear) aggregation of all the individual
objectives. To obtain a set of different Pareto optimal solutions
to approximate the PF, MOEA/D solves a set of such single-
objective optimization subproblems with different weight vec-
tors simultaneously. MOEA/D defines neighborhood relations
among these subproblems based on the distances between their
weight vectors. Each subproblem is optimized in MOEA/D by
using information mainly from its neighboring subproblems.

There are several different variants of MOEA/D. This paper
uses MOEA/D with dynamical resource allocation (MOEA/D-
DRA [27]), which won the CEC 2009 MOEA contest. In
principle, MOEA/D can use any decomposition approach
for defining their subproblems; we employ the Tchebycheff
approach in this paper. Let � = {λ1, . . . , λN} be a set of
N evenly spread weight vectors. Each λj = (λj

1, . . . , λ
j
m)T

satisfies
∑m

i=1 λ
j
i = 1 and λ

j
i ≥ 0 for all i ∈ {1, · · · , m}. Let

z∗ = (z∗
1, . . . , z

∗
m)T be a utopian ideal point. Then, the problem

of approximating the PF of (1) can be decomposed into N

scalar optimization subproblems, and the objective function
of the jth subproblem is to minimize the following function:

gte(x|λj, z∗) = max
1≤i≤m

{λj
i |fi(x) − z∗

i |}. (9)

It is worth noting that z∗ is usually unknown before the search;
the algorithm uses the lowest fi-value found during the search
to substitute z∗

i . During the search, MOEA/D maintains:

1) a population of N solutions x1, . . . , xN ∈ �, where xi

is the current solution to the ith subproblem;
2) FV 1, . . . , FVN , where FV i is the F -value of xi, i.e.,

FV i = F (xi) for each i ∈ {1, . . . , N};
3) z∗ = (z∗

1, . . . , z
∗
m)T , where z∗

i is the best (i.e., smallest)
value found so far for objective fi;

4) πi: utility of subproblem i, which measures how much
improvement has been caused by xi in reducing the
objective of this subproblem; this is defined as

πi =

{
1, if �i > 0.001(

0.95 + 0.05 × �i

0.001

)
× πi, otherwise

(10)
where �i is the relative decrease of the objective func-
tion value of subproblem i.

For each weight vector, its T -neighborhoods are the set of
T closest weight vectors to it. Correspondingly, each solution
and each subproblem have their own T -neighborhoods.

At each generation, a set of solutions are selected from the
current population based on their utilities. For each selected
solution xi, MOEA/D does the following procedures.

1) Set the mating and update range P to be the T -
neighborhoods of xi with a large probability δ, and the
whole population otherwise.

2) Randomly select several current solutions from P .
3) Apply genetic operators on the above-selected solutions

to generate a new solution y, and evaluate F (y).
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4) Replace at most nr solutions in P by y if it is better than
them in terms of their respective subproblems’ objective
functions.

Further details of MOEA/D-DRA can be found in [27].

B. Using FRRMAB to Enhance MOEA/D

To use FRRMAB to enhance MOEA/D, the operators pool
and reward calculation are set as follows.

1) Operators Pool: Many different DE mutation operators
have been proposed. Four of them, which present distinct
search characteristics, are chosen for the AOS in our experi-
ments:

1) DE/rand/1
vi = xi + F × (xr1 − xr2 );

2) DE/rand/2
vi = xi + F × (xr1 − xr2 ) + F × (xr3 − xr4 );

3) DE/current-to-rand/2
vi = xi + K × (xi − xr1 ) + F × (xr2 − xr3 ) + F × (xr4 − xr5 );

4) DE/current-to-rand/1
vi = xi + K × (xi − xr1 ) + F × (xr2 − xr3 )

where xi is called the target vector and vi is the mutant vector.
The variables xr1 , xr2 , xr3 , xr4 , and xr5 are different solutions
randomly selected from P , which are also different from xi.
The scaling factor F > 0 controls the impact of the vector
differences on the mutant vector. K ∈ [0, 1] plays a similar
role to F . For the last two mutation operators, the offspring is
the direct output of mutation, where the crossover operator will
not be used. For the first two mutation operators, a crossover
operator is applied upon xi and vi for generating the offspring
ui. The binomial crossover [43] is used in our experiments. It
works as

ui
j =

{
vi

j, if rand ≤ CR or j = jrand

xi
j, otherwise

(11)

where j ∈ {1, . . . , n} and rand is a uniformly random number
from [0, 1]. The crossover rate CR ∈ [0, 1] is a user-defined
control parameter. jrand is an integer randomly chosen from the
set S = {1, . . . , n}. After the application of these DE operators,
a generated offspring might undergo, with a small probability,
the polynomial mutation operator [44].

2) Reward Calculation: In a recent work on AOS for
selecting DE mutation operators [32], a DE mutation operator
is rewarded based on the fitness improvement of the offspring
compared with its corresponding target vector. In MOEA/D,
however, the generated offspring is not directly compared with
its target vector. In fact, an offspring is compared with several
solutions randomly selected from the mating pool P , and one
offspring can replace up to nr solutions in P . Different solu-
tions correspond to different subproblems, and thus, different
comparisons are based on different aggregations of objective
functions. In this paper, if an offspring successfully replaces
xi, the DE mutation operator that generates it will receive the
following reward:

η =
g(xi|λi, z∗) − g(y|λi, z∗)

g(xi|λi, z∗)
(12)

where λi is the weight vector for subproblem i.

An operator op may receive several rewards due to its
generated offspring y. We sum up all these reward values as
its final reward FIRop.

The pseudocode of the MOEA/D with FRRMAB, denoted
as MOEA/D-FRRMAB, is given in Algorithm 3. It is worth
pointing out that FRRMAB can be used within other MOEA/D
variants in the same way.

V. Experimental Studies

Our experimental studies can be divided into six parts.

1) Section V-B investigates how good the performance
of MOEA/D-FRRMAB is compared with three other
recent MOEA/D variants, namely, MOEA/D-DE [45],
MOEA/D-DRA [27], and ENS-MOEA/D [46]. The lat-
ter ensembles different neighborhood sizes by using a
probability-based method.

2) Section V-C investigates what benefits can be obtained
by the efficient use of a pool of operators in MOEA/D-
FRRMAB. To this end, MOEA/D-FRRMAB is com-
pared with four MOEA/D variants, each of which uses
only one DE mutation operator from the operators pool.

3) Section V-D analyzes what advantages FRRMAB has
over the other operator selection mechanisms. To this
end, it compares MOEA/D-FRRMAB with MOEA/D
variants using other AOS methods.

4) To gain a deeper understanding about the proposed
FRRMAB, the dynamics of its operator selection process
are experimentally studied in Section V-E.

5) The proposed FRRMAB has several control parameters.
Section V-F conducts a sensitivity analysis on some
important ones.

6) To study the performance of our proposed algorithm
on many-objective optimization problems, Section V-G
tests MOEA/D-FRRMAB on three five-objective test
instances.

A. Experimental Settings

1) Test instances: Ten unconstrained MOP test instances
(UF 1 to UF 10) with various characteristics proposed
in [47] and three five-objective test instances (WFG
1, WFG 8, and WFG 9 from [48]) are used in our
experimental studies. The UF instances have nonlinear
PSs in the decision space, and their corresponding PFs
are given in Fig. 3. The number of decision variables of
the UF instances is set to 30; for the WFG instances it
is set to 28, eight of which are position related, while
the other 20 are distance related.

2) Performance metrics: As discussed in [49] and [50],
no unary performance metric is able to give a compre-
hensive measure on the performance of an MOEA. In
our experimental studies, we consider the following two
widely used performance metrics.

a) Inverted generational distance (IGD) metric [51]:
Let P∗ be a set of uniformly distributed Pareto
optimal solutions in the objective space. Let S

be the obtained approximation to the PF in the
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Fig. 3. PF of the benchmark problems. (a) UF 1, UF 2, UF 3. (b) UF 4. (c) UF 5. (d) UF 6. (e) UF 7. (f) UF 8, UF 10. (g) UF 9.

Fig. 4. Box plots for the comparison of MOEA/D-DE, MOEA/D-DRA, ENS-MOEA/D, and MOEA/D-FRRMAB on IGD. Wilcoxon’s rank sum test at a
0.05 significance level is performed between MOEA/D-FRRMAB and each of MOEA/D-DE, MOEA/D-DRA, and ENS-MOEA/D. “+” and “++” denote that
the performance of the corresponding algorithm is significantly worse than or better than that of the proposed MOEA/D-FRRMAB, respectively. The algorithm
with the best mean IGD value is underlined.

Fig. 5. Box plots for the comparison of MOEA/D-DE, MOEA/D-DRA, ENS-MOEA/D, and MOEA/D-FRRMAB on IH . Wilcoxon’s rank sum test at a 0.05
significance level is performed between MOEA/D-FRRMAB and each of MOEA/D-DE, MOEA/D-DRA, and ENS-MOEA/D. “+” and “++” denote that the
performance of the corresponding algorithm is significantly worse than or better than that of the proposed MOEA/D-FRRMAB, respectively. The algorithm
with the best mean IH value is underlined.
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Algorithm 3: MOEA/D-FRRMAB

Initialize the population {x1, · · · , xN} and z∗;1

set gen = 0;2

for i ← 1 to N do3

B(i) = {i1, · · · , iT } where λi1 , · · · , λiT are the T4

closest weight vectors to λi and set πi = 1;
end5

while Stopping criterion is not satisfied do6

Let all the indices of the subproblems whose7

objectives are MOP individual objectives fi form the
initial I. By using 10-tournament selection based on
πi, select other 
N/5� − m indices and add them to I.
for each i ∈ I do8

op = FRRMAB(FRR);9

if uniform(0, 1) < δ then10

P := B(i);11

else12

P := the entire population;13

end14

Randomly select some solutions from P ;15

Generate a candidate ȳ by the application of the16

chosen DE mutation operator op over the selected
solutions;
Apply polynomial mutation operator on ȳ with17

probability pm, to produce the offspring y;
Update the current reference point z∗;18

c = 0;19

while c < nr‖P! = ∅ do20

Randomly pick a solution xj from P ;21

η = g(xj |λj,z∗)−g(y|λj,z∗)
g(xj |λj,z∗) ;22

if η > 0 then23

Replace xj with y;24

Remove xj from P ;25

FIRop = FIRop + η;26

end27

c++;28

end29

SlidingWindow.SetIndex(op);30

SlidingWindow.SetFIR(FIRop);31

CreditAssignment(Reward, SlidingWindow);32

Decay(Reward, FRR);33

gen++;34

if mod(gen, 50) == 0 then35

// mod is the modulo operator36

update the utility πi of each subproblem;37

end38

end39

end40

objective space. The IGD value of S is defined as

IGD(S, P∗) =

∑
x∈P∗ dist(x, S)

|P∗| (13)

where dist(x, S) is the minimal Euclidean distance
between x and the points in S, and |P∗| is the
cardinality of P∗. In general, the IGD metric is

able to give a reliable measure to the quality of
S if |P∗| is large enough. In our experiments, the
number of points in P∗ is 1000 for the biobjective
test instances, 10 000 for the three-objective ones,
and 5000 for the five-objective ones.

b) Hypervolume indicator (IH ) [52]: Let y∗ =
(y∗

1, . . . , y
∗
m) be a antioptimal reference point in the

objective space that is dominated by all Pareto op-
timal objective vectors. Let S be the obtained ap-
proximation to the PF in the objective space. Then,
the IH value of S (with regard to y∗) is the volume
of the region dominated by S and bounded by y∗

IH (P) = volume(
⋃
y∈S

[y1(x), y∗
1]×. . . [ym, y∗

m]). (14)

In our experiments, y∗ = (2.0, 2.0) for biobjective
test instances, y∗ = (2.0, 2.0, 2.0) for three-
objective ones, and y∗ = (3.0, 5.0, 7.0, 9.0, 11.0)
for five-objective cases.

Generally speaking, the lower the IGD value, the better
S approximates the true PF. For IH , the higher the
better. Moreover, in order to have statistically sound
conclusions, Wilcoxon’s rank sum test at a 0.05 sig-
nificance level is adopted to compare the significance
of the differences between the solution sets obtained by
two competing algorithms.

3) Parameter settings: The parameters of MOEA/D-DE,
MOEA/D-DRA, and ENS-MOEA/D are set according
to [27], [45], and [46], respectively. All algorithms
are implemented in Java,1 except for ENS-MOEA/D,
which is written in MATLAB.2 The parameter settings
of MOEA/D-FRRMAB are as follows.

a) Control parameters in DE and polynomial muta-
tion: Following [27] and [45], we set CR = 1.0
and F = 0.5 for the DE operators, and η = 20,
pm = 1/n for the polynomial mutation operator.
K = 0.5, as in [17].

b) Population size: N = 600 for biobjective test
instances, 1000 for the three-objective ones, and
1200 for the five-objective cases.

c) Number of independent runs and maximum num-
ber of function evaluations: 30 independent runs
are conducted for each algorithm on each test
instance. The maximum number of function eval-
uations is fixed to be 300 000.

d) The neighborhood size: T = 20.
e) Maximum number of solutions replaced by each

new solution: nr = 2.
f) Probability with regard to selecting P : δ = 0.9 as

in [27].
g) Control parameters in FRRMAB: except for

Section V-F, in which the robustness of these
control parameters is analyzed, they are constantly
set as follows.
i) Scaling factor: C = 5.0.

1The source codes of MOEA/D-DE and MOEA/D-DRA were obtained from
the open source package jMetal, which can be downloaded at .

2The source code of ENS-MOEA/D was obtained from its original authors.
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TABLE I

Statistics of Performance Comparisons

With the Other MOEA/D Variants

MOEA/D DRA ENS
– 10 7 7

IGD + 0 1 1
≈ 0 2 2
– 9 6 6

IH + 0 0 1
≈ 1 4 3

“–,” “+,” and “≈” denote the number of times the performance of the
corresponding algorithm is worse than, better than, and similar to that of
the proposed MOEA/D-FRRMAB, respectively, according to the Wilcoxon
rank sum test at a 0.05 significance level.

ii) Size of sliding window: W = 0.5 × N.
iii) Decaying factor: D = 1.0.

B. MOEA/D-FRRMAB Versus State-of-the-Art MOEA/D
Variants

We have first compared MOEA/D-FRRMAB with three
MOEA/D variants, namely, MOEA/D-DE, MOEA/D-DRA,
and ENS-MOEA/D on UF 1 to UF 10. Figs. 4 and 5 present
the box plots of the IGD and IH metric values obtained
from 30 independent runs. Table I provides the statistics
summarizing these performance comparisons. In these figures
and tables, MOEA/D-DE, MOEA/D-DRA, ENS-MOEA/D,
and MOEA/D-FRRMAB are denoted as MOEA/D, DRA,
ENS, and FRRMAB, respectively. These results clearly show
that MOEA/D-FRRMAB is the best. Actually, it has obtained
better results in 53 out of its 60 performance comparisons with
other algorithms (one such comparison compares MOEA/D-
FRRMAB with another algorithm on one instance based on
IGD or IH ), being significantly better in 45 out of all these
comparisons. It is worth noting that our proposed algorithm
significantly outperforms the recently proposed MOEA/D vari-
ant, ENS-MOEA/D, in 13 out of 20 comparisons. Thus, we can
conclude that the use of FRRMAB has successfully improved
the performance of the baseline MOEA/D.

On UF 3 and UF 10, MOEA/D-FRRMAB has been beaten
by ENS-MOEA/D and MOEA/D-DRA. Both UF 3 and UF 10
have many local PFs. This may imply that FRRMAB could not
efficiently improve the global search ability. One may consider
the search diversity in credit assignment as in [33], which will
be a research issue for our further work.

The good performance presented by MOEA/D-FRRMAB
does not come for free. Here, we also intend to compare the
CPU time of the proposed algorithm to the baseline MOEA/D-
DRA, MOEA/D-DE, and ENS-MOEA/D, respectively. The
average CPU time out of 30 independent runs used by
MOEA/D-FRRMAB and its competitors, on all the benchmark
test problems, are given in Table II.3 The lowest CPU time is
highlighted in bold type with a gray background.

As can be seen, compared to MOEA/D-DRA and
MOEA/D-DE, the FRRMAB module needs extra CPU time
for updating the credit value of each operator and for making

3All experiments were run on a 2.3-GHz Intel Core i7 machine, with 16-GB
1600-MHz DDR3 of RAM memory, running Mac OS X 10.8.

TABLE II

Average CPU Time (in Seconds) Needed by MOEA/D-FRRMAB,

MOEA/D-DE, MOEA/D-DRA, and ENS-MOEA/D

FRRMAB MOEA/D DRA ENS
UF 1 5.13 3.66 4.63 1563
UF 2 5.39 3.81 4.76 1655
UF 3 6.18 4.35 5.36 1666
UF 4 5.55 3.91 4.95 1621
UF 5 5.46 3.82 4.93 1634
UF 6 5.44 3.90 5.01 1613
UF 7 5.14 3.53 4.58 1601
UF 8 7.58 5.09 7.61 1782
UF 9 7.53 5.22 7.59 1756
UF 10 8.05 5.60 7.92 1799

TABLE III

Statistics of Comparisons With MOEA/D Variants

Using a Single DE Mutation Operator

Op. 1 Op. 2 Op. 3 Op. 4
– 7 8 5 9

IGD + 0 0 0 0
≈ 3 2 5 1
– 7 7 6 10

IH + 0 0 0 0
≈ 3 3 4 0

“–,” “+,” and “≈” denote the number of times the performance of the
corresponding algorithm is worse than, better than, and similar to that of
the proposed MOEA/D-FRRMAB, respectively, according to the Wilcoxon
rank sum test at a 0.05 significance level.

a decision on which operator to apply at every generation.
More specifically, it spends about 2 more seconds on two-
objective test instances, namely, UF 1 to UF 7, and an extra 3
s on three-objective test instances. This corresponds to around
40% of extra time, on average, for all the instances. However,
it is worth noting that the CPU time of ENS-MOEA/D is
much longer than the other MOEA/D variants. This is mainly
due to the fact that it was implemented in MATLAB and its
code has not been fully vectorized.

C. Operators Pool Versus a Single DE Mutation Operator

Now, we investigate what benefits can be obtained by
efficiently using a pool of operators in MOEA/D-FRRMAB.
For this purpose, MOEA/D-FRRMAB is compared with four
MOEA/D variants, each of them using only one DE mutation
operator from the operators pool. A variant using a DE
mutation operator i is called Op. i. To have a fair comparison,
all the parameter settings in Op. i are kept the same as those in
MOEA/D-FRRMAB, except that MOEA/D-FRRMAB uses an
operators pool while Op. i only uses DE mutation operator i.

From the experimental results in Figs. 6, 7, and Table III, it
is evident that MOEA/D-FRRMAB is the best among all the
five algorithms. Actually, MOEA/D-FRRMAB has produced
the best results on almost all the test instances, except for
UF 3 and UF 6, in which Op. 2 and Op. 3 perform better,
respectively. This indicates that using FRRMAB to manage
an operators pool is beneficial, compared with using a single
operator. It is noticeable that there is no clear winner among
the four MOEA/D variants using a single operator.
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Fig. 6. Box plots for the comparison of MOEA/D-FRRMAB and MOEA/D variants with a single DE mutation operator on IGD. (Wilcoxon’s rank sum
test at a 0.05 significance level is performed between MOEA/D-FRRMAB and each of the static variants. “+” and “++” denote that the performance of the
corresponding algorithm is significantly worse than or better than that of the proposed MOEA/D-FRRMAB, respectively. The algorithm with the best mean
IGD value is underlined.)

Fig. 7. Box plots for the comparison of MOEA/D-FRRMAB and MOEA/D variants with single DE mutation operator on IH . (Wilcoxon’s rank sum test
at a 0.05 significance level is performed between MOEA/D-FRRMAB and each of the static variants. “+” and “++” denote that the performance of the
corresponding algorithm is significantly worse than or better than that of the proposed MOEA/D-FRRMAB, respectively. The algorithm with the best mean
IH value is underlined.)

D. FRRMAB Versus Other AOS Methods

As mentioned in Section II, some other AOS methods
have been proposed before. Among them, PM [34], AP [35],
and SRMAB [16] are three representative approaches. We
have compared FRRMAB with these three AOS methods in
the context of MOEA/D. In our implementations, we have
replaced FRRMAB in MOEA/D-FRRMAB by each of these
three methods, producing three algorithms for comparison.
More specifically, PM and AP are coupled with the same credit
assignment scheme proposed in Section III, while SRMAB
uses its own credit assignment scheme [16]. The control
parameters in these AOS methods are set as recommended by
their corresponding original papers [35]. In particular, for PM
and AP, the minimal operator selection probability pmin = 0.1
and adaptation rate α = 0.8. For AP, the learning rate β is set
to 0.8. The control parameters in SRMAB are set to the same
as in our proposed FRRMAB.

From the experimental results in Figs. 8, 9, and Table IV,
it is clear that the proposed FRRMAB is the best in this com-
parison. It won on 73 out of 80 performance comparisons and
performed significantly better on 63 comparisons. The second
best competitor is the other bandit-based method, SRMAB,
which won on UF 4, UF 6, and UF 10. The outperformance

TABLE IV

Statistics of Performance Comparisons

With the Other AOS Variants

PM AP SRMAB Uniform
– 9 7 5 10

IGD + 0 0 1 0
≈ 1 3 4 0
– 9 9 4 10

IH + 0 0 1 0
≈ 1 1 5 0

“–,” “+,” and “≈” denote the number of times the performance of the
corresponding algorithm is worse than, better than, and similar to that of
the proposed MOEA/D-FRRMAB, respectively, according to the Wilcoxon
rank sum test at a 0.05 significance level.

of SRMAB on these three test instances should be attributed to
its comparison-based credit assignment scheme, which might
be more suitable for these fitness landscapes. These results
confirm that bandit-based methods are able to outperform
others in the AOS context. The superiority of bandit should
come from its theoretically sound way of balancing exploration
and exploitation.

Another issue is regarding whether an intelligent AOS
method is better than a random AOS one. To address this issue,



124 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 18, NO. 1, FEBRUARY 2014

Fig. 8. Box plots for the comparison of MOEA/D-FRRMAB with other AOS variants on IGD. (Wilcoxon’s rank sum test at a 0.05 significance level is
performed between MOEA/D-FRRMAB and each of the other AOS variants. “+”and “++”denote that the performance of the corresponding algorithm is
significantly worse than or better than that of the proposed MOEA/D-FRRMAB, respectively. The algorithm with the best mean IGD value is underlined.)

Fig. 9. Box plots for the comparison of MOEA/D-FRRMAB with other AOS variants on IH . (Wilcoxon’s rank sum test at a 0.05 significance level is
performed between MOEA/D-FRRMAB and each of the other AOS variants. “+” and “++” denote that the performance of the corresponding algorithm is
significantly worse than or better than that of the proposed MOEA/D-FRRMAB, respectively. The algorithm with the best mean IH value is underlined.)

we have compared MOEA/D-FRRMAB with its counter-
part using a uniformly random operator selection strategy
(denoted as Uniform). From Figs. 8, 9, and Table IV, it
is evident that the uniformly random selection strategy is
the worst among all the methods. This finding confirms
that it is worth exploring information about the recent per-
formance of operators, and intelligent AOS methods can
significantly improve the performance of the underlying
algorithm.

E. Dynamics of Operator Selection

We have shown that FRRMAB is highly beneficial to
MOEA/D performance. To have a deeper understanding of
the behavior of FRRMAB, we now investigate how the usage
number of each operator changes during the whole search pro-
cess. For this purpose, we divide the whole search process (i.e.,
300 000 function evaluations) into 50 consecutive phases, each
of which consists of 6000 function evaluations. We have cal-
culated the usage number of each operator during each phase
and plotted the evaluations of these usage numbers in Fig. 10.

From Fig. 10, one can observe that no single operator
can dominate over the whole search process on all the test
instances. However, the search process for each test instance
can be divided into a few stages, each of which is completely

dominated by a single operator. For example, on UF 1, the
search process can be divided into three stages. Search phase 1
to phase 19 constitute stage 1, on which operator 2 dominates.
Search phase 20 to phase 33 constitute stage 2, on which
operator 1 dominates, while search phase 34 to phase 50
constitute stage 3, on which operator 4 dominates. These
observations show that FRRMAB can use different operators
on different search stages and that it can efficiently switch
from one operator to another.

The four DE mutation operators in the operators pool have
different characteristics. Operators 2 and 3 have two random-
to-random terms, while the other two have only one; therefore,
the former two are able to do more exploration than the latter
ones. As previously discussed, intuitively, it is desirable to
explore the search space in the initial stages of the optimization
process, and perform more exploitation at later stages. This is
empirically confirmed in Fig. 10: for most of the instances,
operators 2 and/or 3 are preferred at early stages, while
operators 1 and/or 4 are more frequently used at later ones.
Figs. 6, 7, and Table III suggest that, overall, operator 4
performs worst among the four operators in UF test instances.
One can also notice that this operator is rarely selected in
FRRMAB. These observations imply that FRRMAB is able
to select operators in a reasonable manner.
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Fig. 10. Operator adaptation trajectories of MOEA/D-FRRMAB on different benchmark problems. (a) Operator adaptation trajectory on UF 1. (b) Operator
adaptation trajectory on UF 2. (c) Operator adaptation trajectory on UF 3. (d) Operator adaptation trajectory on UF 4. (e) Operator adaptation trajectory on UF 5.
(f) Operator adaptation trajectory on UF 6. (g) Operator adaptation trajectory on UF 7. (h) Operator adaptation trajectory on UF 8. (i) Operator adaptation
trajectory on UF 9. (j) Operator adaptation trajectory on UF 10.
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Fig. 11. Median IGD metric values found by MOEA/D-FRRMAB with 72 different combinations of C, D, and W on UF3 (a to c) and UF7 (d to f ).
(a) W = 0.5 × NP . (b) W = NP . (c) W = 2 × NP . (d) W = 0.5 × NP . (e) W = NP . (f) W = 2 × NP.

F. Parameter Sensitivity Analysis in FRRMAB

There are three control parameters in FRRMAB.

1) The scaling factor C. As discussed in Section II-B2b,
C balances exploration and exploitation in the operator
selection process. A low value of C will favor the oper-
ators with the best previous performance, while a high
value of C will prefer operators that were infrequently
used before.

2) The size of the sliding window W . This parameter
defines how many operator applications are used to
calculate the credit values awarded to the operators.

3) The decaying factor D. D determines the priority level
given to the best rewarded operator; a lower value of
D will lead to a higher credit value for the top-ranked
operators.

To study how MOEA/D-FRRMAB is sensitive to these
three parameters, we have tried to cover a large range of
values for each parameter. Four values were considered for
scaling factor C: 0.5, 1.0, 2.0, and 5.0, three values for sliding
window size W : 0.5 × N, N, and 2 × N, and six values for
the decaying factor D: 0.1, 0.3, 0.5, 0.7, 0.9, and 1.0. We
have taken UF 3 and UF 7 as test instances and tested all
the 72 different parameter configurations. Thirty independent
runs have been conducted for each configuration on each
test instance. Figs. 11 and 12 show the median IGD and IH

metric values found with these 72 different configurations,

respectively. From these two figures, one can observe that
different configurations can lead to different performances on
both test instances. In order to further analyze this issue,
for each performance metric and each test instance, we take
the best parameter configuration in terms of the median
metric value as a baseline, and compare it with each of the
other 71 configurations using the Wilcoxon rank sum test
at the 0.05 significance level. On UF 3, in terms of the
IGD metric, the best configuration (C = 0.5, D = 0.7, W =
0.5 × N) is not significantly different from 30 out of 71
configurations. In terms of IH , the best configuration is not
significantly different from 26 out of 71 configurations. On
UF 7, in terms of the IGD metric, the best configuration
(C = 1.0, D = 0.3, W = 0.5 × N) is not significantly different
from 28 out of 71 configurations. In terms of the IH metric,
the best configuration (C = 0.5, D = 0.5, W = 0.5 × N)
significantly outperforms only ten configurations. Since more
than 50% configurations are worse than the best configuration
in these cases, one should be careful when setting these
parameters.

G. Performance on Many-Objective Problems
Most existing MOEAs are designed for and tested

on problems with two or three objectives [53]. Their
performances often deteriorate as the number of objectives
increases. However, many real-world applications can involve
more than three objectives. Many-objective optimization has
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Fig. 12. Median IH values found by MOEA/D-FRRMAB with 72 different combinations of C, D, and W on UF3 (a to c) and UF7 (d to f ). (a) W = 0.5×NP .
(b) W = NP . (c) W = 2 × NP . (d) W = 0.5 × NP . (e) W = NP . (f) W = 2 × NP.

Fig. 13. Box plots for the comparison of MOEA/D-DE, MOEA/D-DRA, ENS-MOEA/D, and MOEA/D-FRRMAB on IGD. (Wilcoxon’s rank sum test at
a 0.05 significance level is performed between MOEA/D-FRRMAB and each of MOEA/D-DE, MOEA/D-DRA, and ENS-MOEA/D. “+” and “++” denote
that the performance of the corresponding algorithm is significantly worse than or better than that of the proposed MOEA/D-FRRMAB, respectively. The
algorithm with the best mean IGD metric value is underlined.)

Fig. 14. Box plots for the comparison of MOEA/D-DE, MOEA/D-DRA, ENS-MOEA/D, and MOEA/D-FRRMAB on IH . (Wilcoxon’s rank sum test at
a 0.05 significance level is performed between MOEA/D-FRRMAB and each of MOEA/D-DE, MOEA/D-DRA, and ENS-MOEA/D. “+” and “++” denote
that the performance of the corresponding algorithm is significantly worse than or better than that of the proposed MOEA/D-FRRMAB, respectively. The
algorithm with the best mean IH metric value is underlined.)
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TABLE V

Statistics of Performance Comparisons With the Other

MOEA/D Variants on Many-Objective Problems

MOEA/D DRA ENS
– 3 3 3

IGD + 0 0 0
≈ 0 0 0
– 3 2 2

IH + 0 0 0
≈ 0 1 1

“–,” “+,” and “≈” denote the number of times the performance of the
corresponding algorithm is worse than, better than, and similar to that of
the proposed MOEA/D-FRRMAB, respectively, according to the Wilcoxon
rank sum test at a 0.05 significance level.

attracted growing attention from the evolutionary computation
community. Although the major purpose of this paper is not to
address many-objective problems, we still want to investigate
whether FRRMAB can improve the abilities of MOEA/D
for dealing with many-objective problems. To this end, we
have taken three five-objective instances from [48] (WFG 1,
WFG 8, and WFG 9) to test algorithms’ abilities for dealing
with many objectives. These instances were used in the CEC
2007 MOEA contest [54]. We have compared our proposed
MOEA/D-FRRMAB with MOEA/D-DE, MOEA/D-DRA,
and ENS-MOEA/D on these three instances. The parameter
settings are the same as in Section V-B, except for N = 1200,
and both of IGD and IH are employed as the performance
metrics here. Wilcoxon’s rank sum test at a 0.05 significance
level is used to compare the statistical significance between
every two algorithms.

From the experimental results in Figs. 13, 14, and Table V,
we can conclude that MOEA/D-FRRMAB is the most com-
petitive algorithm among all these MOEA/D variants. To be
specific, WFG 1 can measure an MOEA for coping with bias
from the experimental results shown in Figs. 13 and 14; we
can clearly find the superior performance of our proposed
MOEA/D-FRRMAB. Similarly to WFG 1, WFG 8 and WFG 9
are also featured with significant bias. In addition, the distance-
related parameters are dependent on position-related param-
eters. The outperformance of MOEA/D-FRRMAB indicates
that the AOS method can be of benefit for finding a promising
set of distance parameters. As for WFG 9, although the de-
pendency between position-related and distance-related param-
eters is not as difficult like that of WFG 8, it has multimodal
and nonseparable reduction properties. The performance of
MOEA/D-DE is slightly better than that of MOEA/D-DRA,
but both perform worse than MOEA/D-FRRMAB. Based on
these empirical results, we can conclude that AOS methods are
worth considering in MOEAs for many-objective problems.

VI. Conclusion

In this paper, we proposed a new bandit-based AOS method,
FRRMAB, to automatically select appropriate operators in an
online manner. In FRRMAB, the fitness improvement rate
caused by an operator is used to measure its quality. A method
with a decaying mechanism was used to calculate the final
reward value for each operator based on all the recent fitness

improvement rates that were stored in a sliding window. Then,
guided by these reward values, a simple bandit-based scheme
selected the operator to be used next.

Since it was not easy to quantify the improvement caused
by an operator in most Pareto dominance-based MOEAs, the
use of AOS in these algorithms posed a big challenge. The
decomposition nature of MOEA/D made it very suitable for
using AOS. This paper studied several issues in incorporating
our proposed FRRMAB into MOEA/D. We proposed a simple
way for measuring the improvement caused by an operator
for each subproblem within the MOEA/D framework. We
took four commonly used DE mutation operators as candidate
operators and conducted extensive experimental studies on
some test instances. We showed that FRRMAB was robust,
and its operator selection was reasonable in MOEA/D. The
comparison experiments also indicated that FRRMAB can
significantly improve the performance of MOEA/D.

Although FRRMAB was used to select operators for static
MOPs in this paper, this approach could be generalized in
a straightforward way for dealing with dynamic MOPs. It
could also be useful to many other online selection issues
in evolutionary computation, such as allocating computational
efforts to different subproblems in decomposition-based multi-
objective optimization, and selecting surrogate models in
model-based EAs. Moreover, in addition to the decomposition-
based MOEAs, a similar idea can also be applied to the
indicator-based MOEAs, in which the fitness improvements
caused by an operator can be measured with respect to the
improvements evaluated by the underlying indicator. These are
possible research issues for the follow-up to this paper.

The source code of our proposed MOEA/D-FRRMAB, the
numerical values of the simulations, and more comprehensive
parameter sensitivity studies can be found on K. Li’s home-
page: a nd Q. Zhang’s homepage: .
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